
NXP AN11208 Cortex-M0 Application note
http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

This application note describes the IEC60335 Class B certified library for the NXP ARM Cortex-
M0 family members. All tests implemented and the library usage are described in detail.

ManualLib.com collects and classifies the global product
instrunction manuals to help users access anytime and
anywhere, helping users make better use of products.

http://www.manuallib.com

 AN11208
NXP LPC Cortex-M0 IEC60335 Class B library
Rev. 1.1 — 22 January 2014 Application note

Document information
Info Content
Keywords NXP ARM Cortex-M0, IEC60335 Class B, VDE, LPC1100, LPC1200

Abstract This application note describes the IEC60335 Class B certified library for
the NXP ARM Cortex-M0 family members. All tests implemented and the
library usage are described in detail.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 2 of 76

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1.1 20140122 Minor edits.

1 20120601 Initial version.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 3 of 76

1. Introduction
Modern day home appliances require a certain level of protection in order to avoid
hazardous situations if the appliance fails. Since 2007, home appliances must comply
with the IEC60335 standard. Home appliance manufacturers therefore need to ensure
that the requirements are met.

This document describes the IEC60335 standard requirements with respect to software
for microcontrollers and the implementation of these requirements. NXP has developed a
software library for the NXP ARM Cortex-M0 family, based on these requirements; this
document discusses the tests and the usage of these tests in detail.

ATTENTION!

The usage of this library does not make a certified application of your project. It is still
necessary to have the complete application software certified.

This library should not be changed, and it should be used as explained. Otherwise, a
new certification for the changed parts will be necessary.

The library is usable, as-is, for all NXP ARM Cortex-M0 products, including those not
specifically mentioned in this application note.

1.1 How to read this application note
This application note is a guide in using and implementing the library functions provided.
It will first discuss the requirements the IEC60335 standard sets, and then briefly discuss
the products the library is developed for.

The main part of the document describes how the Class B tests are done and how it can
and should be implemented. Details on the tested peripherals are given in the last
chapter.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 4 of 76

2. IEC60335 Class B
The IEC60335 standard specifies design enhancements for home appliance
manufacturers that design appliances with electronic controls and controls using software
with respect to safe and reliable operation. This standard requires inclusion of features
that will avoid or at least minimize the change of hazardous situations when the
appliance fails.

Referring to IEC60730, this deals with standard various assets of safety and reliability
precautions required to be taken for all home appliances. Annex H of the IEC60730
standard software and hardware requirements are defined to be taken in order to comply
with this standard.

2.1 Software classification
Within the IEC60730 Annex H, details for testing and diagnostic implementation in
microcontroller software are classified as A, B or C.

• Class A: Control functions which are not intended to be relied upon for the safety of
the equipment.

• Class B: Control functions intended to prevent unsafe operation of the controlled
equipment.

• Class C: Control functions which are intended to prevent special hazards (e.g.
explosion of the controlled equipment such as burner controls).

The majority of home appliances, like white goods (refrigerator, dishwasher, cooker etc.)
and personal appliances (electrical tooth brush, shaver etc.), require the Class B level of
precautions.

IEC60370 Class B specifies that measures must be taken to avoid software related faults
and errors in data and segments of the software that are safety related. Periodic
monitoring of the system therefore is required.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 5 of 76

2.2 Class B components
Table H.11.12.7 of IEC60730 Annex H specifies the components to be tested and
monitored during operation of the controller. Table 1 shows a summary of table
H.11.12.7.

Table 1. IEC60335 Class B tests as defined by IEC60730 Annex H
Test
number

Component Fault/error In
library

1.1. CPU registers Stuck at YES

1.3. Program Counter Stuck at YES

2. Interrupt handling and execution No interrupt or too frequent
interrupt

YES

3. Clock Wrong frequency (for quartz
synchronized clock: harmonics/
subharmonics only)

YES[1]

4.1. Invariable memory All single bit faults YES

4.2. Variable memory DC Fault YES

4.3. Addressing (relevant to variable and
invariable memory)

Stuck at YES

5.1.[2] Internal data path Stuck at NO

5.2.[2] Addressing Wrong address NO

6. External communications Hamming distance 3 NO

6.3. Timing Wrong point in time and
sequence

NO

7. [3] Input/output periphery Fault conditions specified in H.27 NO

7.2.1. [3] A/D and D/A converters Fault conditions specified in H.27 NO

7.2.2. [3] Analog multiplexer Wrong addressing NO

 NO

[1] Only applicable of the NXP ARM Cortex-M0 family members with RTC domain.
[2] Only when using external memory.
[3] Production plausibility check.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 6 of 76

3. NXP ARM Cortex-M0 microcontrollers
This chapter gives a general description of the NXP ARM Cortex-M0 family members for
which the IEC60335 Class B self-test libraries are written.

3.1 The NXP ARM Cortex-M0 microcontrollers
The NXP LPC1100(L) is the world's first Cortex-M0 based microcontroller series. It offers
users a cost-effective, very easy-to-use 32-bit MCU which is code- and tool-compatible
with other NXP ARM-based MCU products. With 32-bit performance and multiple power
modes including very low, deep sleep power, the LPC1100(L) series offers industry-
leading energy efficiency, greatly extending battery life. The LPC1100(L) series sets new
benchmarks in performance efficiency with dramatically improved code density enabling
longer battery life and lower system costs.

3.1.1 The ARM Cortex-M0 core
The ARM Cortex-M0 processor is the smallest, lowest-power and most energy-efficient
ARM processor available. The exceptionally small silicon area, low power, and minimal
code footprint of the processor achieves 32-bit performance at an 8-bit price point,
bypassing the step to 16-bit devices.

The Cortex-M0 processor promises substantial savings in system cost while retaining
tool and binary compatibility with feature-rich processors such as the Cortex-M0
processor. It consumes as little as 85 microwatts/MHz (0.085 milliwatts) in an area of
typically under 12 K gates, enabling the creation of ultra low-power analog and mixed
signal devices.

Fig 1. The Cortex-M0 core

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 7 of 76

The Cortex-M0 processor is built on a highly area and power optimized 32-bit processor
core, with a 3-stage pipeline von Neumann architecture. The processor delivers
exceptional energy efficiency through a small but powerful instruction set and extensively
optimized design, providing high-end processing hardware including a single-cycle
multiplier.

The Cortex-M0 processor implements the ARMv6-M architecture, which is based on the
16-bit Thumb instruction set and includes Thumb-2 technology. This provides the
exceptional performance expected of a modern 32-bit architecture, with a higher code
density than other 8-bit and 16-bit microcontrollers.

The Cortex-M0 processor closely integrates a configurable Nested Vectored Interrupt
Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

• Includes a non-maskable interrupt (NMI). The NMI is not implemented on the
LPC111x/LPC11Cxx.

• Provides zero jitter interrupt option.
• Provides four interrupt priority levels.

The tight integration of the processor core and NVIC provides fast execution of interrupt
service routines (ISRs), dramatically reducing the interrupt latency. This is achieved
through the hardware stacking of registers, and the ability to abandon and restart load-
multiple and store-multiple operations. Interrupt handlers do not require any assembler
wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization
also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes that include a
Deep-sleep function that enables the entire device to be rapidly powered down.

3.2 Product options
The NXP Cortex-M0 product portfolio is growing rapidly. Discover the latest ARM Cortex-
M0 processors on our website:

http://www.nxp.com/products/microcontrollers/cortex_m0_m0/

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 8 of 76

4. IEC60335 Class B library
The chapter gives an overview about the functionality of the various functions and
illustrates how the functions are implemented. It gives you knowledge about the library
and helps with understanding the self-test philosophy. Please note by changing any
library functionality it need to be re-certified again. If a special part needs to be modified,
then there will be an explicit description and explanation.

4.1 POST and BIST
POST (Pre Operation System Test) means the testing as part of the start-up procedure.
These tests are destroyable, i.e., the data contents are not restored after executing the
test. Also, in this state of application, there are normally no interrupts active.

Note, at start-up all tests must be executed: CPU registers, PC, RAM and ROM. For this
reason special POST functions are available. The POST testing is developed such that it
reduces test time and therefore is monolithic and destroyable.

For runtime testing or Build-In System Test (Build-In System Test), the test functions are
non-destructible. To avoid system failures in time critical applications, these test are not
monolithic. Functions are implemented for testing the variable and non-variable in
smaller blocks.

The POST routines for testing the CPU registers, the variable memory (RAM) and
invariable memory (Flash) are available as separate modules, and should be run in
sequence at system startup (after reset).

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 9 of 76

4.2 CPU Register Test (1.1)
4.2.1 Test description

As described in Chapter 5.1 the ARM Cortex-M0 core has a number of registers used
during program execution. Nineteen of these registers are read/write.

Since these registers are all used during program execution in the various core operation
modes, they are tested for stuck-at faults and direct coupling faults.

These tests are to be executed as POST and BIST. POST testing is a destroyable test,
so the CPU registers are not retained. Since the POST CPU register tests don’t retain
register data, it is mandatory to execute this test prior any other application or system
initialisation. Preferably execute this test prior to branch to main.

CPU BIST testing isn’t destroyable, so all data is restored after testing. To decrease test
time and therefore CPU resources, the CPU register BIST testing is divided into five
separate tests. The first three test the general purpose registers, the fourth tests the
stack pointer. To prevent the system from crashing, all interrupts and exceptions are
disabled while running this part of the CPU register BIST. The fifth and last BIST test will
test the other special registers.

Both BIST and POST use the same test methodology when testing the registers. First, a
pattern is stored in the register, then read back and compared. Then, the inverse of that
pattern is stored in the register, read and compared.

4.2.1.1 Failure

If a failure in the POST testing occurs, a function hook has been implemented. The user
has the option to handle a failing CPU POST test by implementing the
_CPUpostTestFailureHook function.

The basic pattern used for the CPU register tests is the following:
• Normal: 0xAAAA.AAAA
• Inverted: 0x5555.55555

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 10 of 76

4.2.2 Test usage
This chapter describes the files used and summarizes all function calls used in CPU
register POST and BIST testing.

The tests are developed in assembly code since for POST the CPU registers need to be
tested before branching to the main routine. The C environment (stack, initialised
variables, and zero initialised variables) is not available at the time the POST test needs
to be performed. Additionally, the CPU register test POST does not require usage of
memory.

The BIST tests are developed in assembly code because most of the registers of the
core are not directly accessible from C code.

4.2.2.1 IEC60335_B_CPUregTest.h

File name Function prototyping

IEC60335_B_CPUregTest.h type_testResult IEC60335_CPUregTest_BIST(void);

extern void _CPUregTestLOW(void);

extern void _CPUregTestMID(void);

extern void _CPUregTestHIGH(void);

extern void _CPUregTestSP(void);

extern void _CPUregTestSPEC(void);

Type definition

IEC60335_CPUreg_struct

This header file contains all function prototypes and the structure type definition used
during the CPU BIST register tests. It therefore enables the C source files to call the
Assembly source routines for the BIST test.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 11 of 76

4.2.2.2 IEC60335_B_CPUregTest.c

File name Function prototyping

IEC60335_B_CPUregTest.c type_testResult IEC60335_CPUregTest_BIST (void)

This file is responsible for the full CPU BIST test routine definition.

Function:
type_testResult IEC60335_CPUregTest_BIST

Purpose:

The type_testResult IEC60335_CPUregTest_BIST (void) function executes the full BIST
test. After this test is executed, the CPUregTestBIST_struct contains the full pass/fail
indication, testPassed. The testState will also be updated, which indicates the passing
tests according to Table 3.

Return value:

IEC60335_testPassed

IEC60335_testFailed

Important file or function notifications:
• The full IEC60335_CPUregTest_BIST may only be executed in thread mode since

the test performs checking of the SP register, which cannot be modified while the
core is executing in handler mode (during an exception).

• Test pass/fail available through function return and also available in the testPassed
member of the CPUregTestBIST structure.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 12 of 76

4.2.2.3 IEC60335_B_CPUregTestBIST_nnn.asm

File name Function prototyping

IEC60335_B_CPUregTestBIST_nnn[1].asm void _CPUregTestLOW(void);

void _CPUregTestMID(void);

void _CPUregTestHIGH(void);

void _CPUregTestSP(void);

void _CPUregTestSPEC(void);

[1] The nnn in the .asm file names must be replaced by a compiler indicator.
gnu = GNU GCC compiler

arm = ARM Realview compiler

iar = IAR EWARM compiler

This file contains all routines for testing the CPU registers during program execution and
it gives the user access to the required functions used by the CPU register BIST testing.

The registers tested by the test functions are:

Table 2. CPU register BIST functions
Test function name Register tested

_CPUregTestLOW R0 - R7

_CPUregTestMID R4 – R10

_CPUregTestHIGH R8 – R12

_CPUregTestSP R13, stackpointer (MSP, PSP)

_CPUregTestSPEC LR, APSR, PRIMASK,

After each individual test the test structure is updated and therefore contains the latest
test values. Each test will reset the testPassed structure member and write the new pass
or fail status. The testState member will also be updated after each test with the status of
all passing tested registers.

Important file or function notifications:
• The _CPUregTestSP can be performed only in thread mode, since it requires

modification of the CONTROL register. As per ARM CPU specification, all direct
writes to the CONTROL register are ignored whilst in handler mode, so this function
cannot be used within a handler routine. All other functions can be executed also in
handler mode (within an ISR exception).

• After test execution, the passing tests will be given a PASS bit in the
CPUregTestBIST_struct testState member according to Table 3.

• After test execution, and all containing tests pass, CPUregTestBIST_struct
testPassed will be set to IEC60335_testPassed = 1.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 13 of 76

4.2.2.4 IEC60335_B_CPUregTestPOST_nnn.asm

File name Function prototyping

IEC60335_B_CPUregTestPOST_nnn[1].asm void _CPUregTestPOST(void);

[1] The nnn in the .asm file names must be replaced by a compiler indicator.
gnu = GNU GCC compiler

arm = ARM Realview compiler

iar = IAR EWARM compiler

This file contains the POST testing routing of the complete set of CPU registers. It gives
the user access to the CPU register POST.

The routine is made available by means of the _CPUregTestPOST assembly label.

Important file or function notifications:
• The CPUregTestPOST function must be executed prior to the branch to main. It

should also execute in Privileged Thread mode.
• After test execution, and all included tests pass, the variable type_testResult
CPUregTestPOSTStatus will be set to IEC60335_testPassed = 1

• The variable CPUregTestPOSTStatus needs to be defined but can be located in
any software module which is part of the application code, as long as its scope is
made visible (so it cannot be declared as a C static variable). This status variable
should preferably be defined in a dedicated module, which the user could place in a
specific section of the device RAM memory, according to its application
requirements.

• The variable CPUregTestPOSTStatus needs to be defined as being “not
initialised”, to prevent its value being changed by the application initialisation code
before reaching main , so that the POST test result is preserved.

• In case of failure during test execution, the variable type_testResult
CPUregTestPOSTStatus will be set to IEC60335_testPassed = 0

• The variable CPUregTestPOSTStatus is defined as a C language enumerative
value. This implies the compiler might choose to represent the value with a single
byte of data; in this case, the module including the CPUregTestPOSTStatus
variable shall be compiled with the appropriate compiler specific option so that a
4 byte value is used to define enumerative values. As an alternative, the return value
can be stored in an unsigned integer variable, which is also guaranteed to be 4 byte
size.

• In case of failure, the CPUregTestPOST will behave in two possible ways:
• (default) The CPU will be kept in a safe state, executing an infinite loop.

This behavior can be overridden by the user application, by re-defining the
function _CPUpostTestFailureHook in an assembly module included within
the application code

• (application specific) The function CPUpostTestFailureHook is an optional
assembly function, located in a module included in the user application.
This allows the system to perform different or additional recovery actions than the
one described in point 1 above.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 14 of 76

4.2.2.5 CPU register test numbers

During the BIST testing the testState member of the test structure is updated with the
passing tests. Table 3 depicts the tested register and its corresponding bit value found in
the testState.

Table 3. CPU register test table
Test number Hexadecimal bit

value
Register Bits tested

0 0x0000 0001 R0 31:0

1 0x0000 0002 R1 31:0

2 0x0000 0004 R2 31:0

3 0x0000 0008 R3 31:0

4 0x0000 0010 R4 31:0

5 0x0000 0020 R5 31:0

6 0x0000 0040 R6 31:0

7 0x0000 0080 R7 31:0

8 0x0000 0100 R8 31:0

9 0x0000 0200 R9 31:0

10 0x0000 0400 R10 31:0

11 0x0000 0800 R11 31:0

12 0x0000 1000 R12 31:0

13 0x0000 2000 R13 (default SP, MSP) 31:2

14 0x0000 4000 R13 (alternative SP) 31:2

15 0x0000 8000 R14 (LR) 31:0

16 0x0001 0000 APSR 31:27

17 0x0002 0000 PRIMASK 0

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 15 of 76

4.3 Program Counter (PC) Test (1.3)
4.3.1 Test description

The Program Counter test checks whether the PC is able to branch throughout the whole
program and data memory space. To test the branching, dummy functions are allocated
throughout the whole used program and data memory space as depicted in Fig 2.

ROM

RAM

0x0000.0000
Vectors

0x0000.0128
Sector: IEC60335_B_behindVectors
Function: IEC60335_B_PCTest_FctA()

0x0000.0300

Sector: IEC60335_B_beforeText
Function: IEC60335_B_PCTest_FctB()

User Code

Sector: IEC60335_B_behindText
Function: IEC60335_B_PCTest_FctC()

0x0000.083C

Sector: IEC60335_B_lastFlashSection
Function: IEC60335_B_PCTest_FctD()

0x0000.7FF0

DataSector: IEC60335_B_beforeRAMcode
Function: IEC60335_B_PCTest_FctE()

Sector: IEC60335_B_behindRAMcode
Function: IEC60335_B_PCTest_FctF()

0x1000.0000

0x1000.0218

Fig 2. Program counter test function placement example

The allocation of the PC dummy test functions are placed accordingly by use of sections
defined in the linker file.

The PC test routines call the dummy functions and check the returned value. Each
dummy function returns a unique value. Thereby it is possible to check if the PC has
jumped to the correct address.

Note that an enabled memory protection unit may trigger an exception when dummy
functions are executable code areas that are protected.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 16 of 76

In principle, the test results always show as okay, because a defective program counter
results in program crashes in any way.

There are two different implementations available for this test: BIST and POST. The
POST will check each dummy function at once. This is implemented by a loop. The BIST
will only test one dummy function per call. All functions will be called after each other like
a ring buffer.

Loop:
Call every Dummyjunction

after each other

Set result TRUE Set result FALSE

Return result

Look up the
current

Dummyfunction

Call the currently
selected

Dummyfunction

Check the return
value of the

Dummyfunction

Set Result TRUE Set Result FALSE

Set the new
current

Dummyfunction

Return the test
result

Fig 3. PC POST (left) and PC BIST (right) test flow diagram

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 17 of 76

4.3.2 Test usage
This chapter describes the usage of the PC POST and BIST.

4.3.2.1 IEC60335_B_ProgramCounterTest.h

File name Function prototyping

IEC60335_B_ProgramCounterTest.h type_testResult IEC60335_B_PCTest_POST(void);

type_testResult IEC60335_B_PCTest_BIST(void);

This header file contains all function prototypes used during the PC tests.

4.3.2.2 IEC60335_B_ProgramCounterTest.c

File name Definitions

IEC60335_B_ProgramCounterTest.c RET_FCT_A = 1

RET_FCT_B = 2

RET_FCT_C = 3

RET_FCT_D = 5

RET_FCT_E = 7

RET_FCT_F = 11

Global variable

UINT32 IEC60335_B_PCTest_lastFctTested

Functions

type_testResult IEC60335_B_PCTest_POST(void)

type_testResult IEC60335_B_PCTest_BIST(void)

The PC test should be done pre-operation (POST) and during program execution (BIST).
The PC POST and BIST functions are to be called in the corresponding state of the
controller.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 18 of 76

Function:
type_testResult IEC60335_B_PCTest_POST(void)

Purpose:

This function should be executed prior running the main application. It will call the test
functions throughout the program and data memory and check the return value against
the expected value.

Return value:

IEC60335_testPassed

IEC60335_testFailed

Function:
type_testResult IEC60335_B_PCTest_BIST(void)

Purpose:

The PC BIST function IEC60335_B_PCTest_BIST(void) executes at every call one PC
test, saves the current executed test and returns a PASS/FAIL. It will automatically run
through all six tests.

Return value:

IEC60335_testPassed

IEC60335_testFailed

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 19 of 76

4.4 Interrupt Handling and Execution Test (2)
4.4.1 Test description

The test for interrupt handling and execution is application dependent. In this test, the
library delivers some templates to enable the users testing the functionality in an abstract
way.

The interrupts will be checked with the aid of counter variables. The different interrupts,
which are observed by counter mechanisms, should have individual up-counting values
instead of simply adding one.

To check the interrupts, the counter value has to be checked cyclically in a known
equidistant time and compared to boundaries estimated by the user. A timer interrupt
service handler should solve this.

Burst of interrupts?

Burst time passed?

Set Result FALSE

Interrupt counter in
boundaries?

Set result TRUE

Return from
function

Fig 4. Interrupt test diagram

The interrupt check routine first checks the interrupt configuration for the type of interrupt.
The test usage details are described in chapter 4.4.2

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 20 of 76

If the interrupt that needs to be checked is a burst of interrupts, the routine will check if
the time to wait for all interrupts has elapsed. If the time has passed, it will check the
interrupt count to be within the boundaries. If not, the check function will return directly,
without setting any Result.

If the interrupt to check is not a burst of interrupts, the routine will check the interrupt
counter to be within the boundary directly.

4.4.2 Test usage
4.4.2.1 IEC60335_B_Interrupts.h

File name Type definition

IEC60335_B_Interrupts.h type_InterruptTest
[1]

Function prototyping

void IEC60335_InitInterruptTest
(
type_InterruptTest *pIRQ,
UINT32 lowerBound,
UINT32 upperBound,
UINT32 individualValue
);

void IEC60335_InterruptOcurred
(
type_InterruptTest *pIRQ
);

type_testResult IEC60335_InterruptCheck
(
type_InterruptTest *pIRQ
);

[1] See the detailed type description in Table 4.

The IEC60335_B_Interrupts header file contains the function prototypes of the interrupt
testing. A type defined structure contains all variables needed for interrupt testing.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 21 of 76

Table 4. Type_InterruptTest type description
Member name Description

UINT32 count The counter variable

UINT32 lower The estimated minimum count value of the interrupt concurrencies

UINT32 upper The estimated maximum count value of the interrupt concurrencies

UINT32 individualValue The individual up-counting value

BOOL CountOverflow Counter overflow bit

BOOL cyclic

UINT32 minTime The time count that has to be waited, before the check is done

4.4.2.2 IEC60335_B_Interrupts.c

File name Function

IEC60335_B_Interrupts.c void IEC60335_InitInterruptTest
(
type_InterruptTest *pIRQ,
UINT32 lowerBound,
UINT32 upperBound,
UINT32 individualValue
)

void IEC60335_InterruptOcurred
(
type_InterruptTest *pIRQ
)

type_testResult IEC60335_InterruptCheck
(
type_InterruptTest *pIRQ
)

This file contains the functions needed for the Interrupt testing.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 22 of 76

Function:
void IEC60335_InitInterruptTest
(
type_InterruptTest *pIRQ,
UINT32 lowerBound,
UINT32 upperBound,
UINT32 individualValue

)

Purpose:

The IEC60335_InitInterruptTest function initialises the interrupt test structure.
This function must be called prior to any interrupt initialisations.

Input variables:

type_InterruptTest *pIRQ

This structure pointer is used to set the default values to the interrupt test structure
members during the interrupt test initialisation.

UINT32 lowerBound

The estimated minimum count value of the interrupt concurrencies.

UINT32 upperBound

The estimated maximum count value of the interrupt concurrencies.

UINT32 individualValue

The internal individual up-counting value.

Return value:

None

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 23 of 76

Function:
void IEC60335_InterruptOcurred
(
type_InterruptTest *pIRQ

)

Purpose:

This function must be called from any interrupt service handler which has to be tested.

Input variables:

type_InterruptTest *pIRQ

Pointer to the interrupt test structure.

Return value:

None

Function:
type_testResult IEC60335_InterruptCheck
(
type_InterruptTest *pIRQ

)

Purpose:

This function should be called periodically and it will do a ‘quantity of interrupts’ check for
the interrupt under test.

Input variables:

type_InterruptTest *pIRQ

Pointer to the interrupt test structure.

Return value:

IEC60335_testPassed

IEC60335_testFailed

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 24 of 76

4.5 Clock System Test (3)
This chapter is only applicable for the NXP Cortex-M0 family members with an
RTC.

4.5.1 Test description
This test is intended to check the CPU clock source and frequency. This requires a
second independent clock source. For a part of the NXP ARM Cortex-M0 family, the only
possibility to get interrupts triggered, sourced by an independent clock, is to use the RTC
peripheral.

Three test functions are implemented; the first one is cyclically called from the main loop
of the user application.

As depicted in the Fig 5, the main loop function checks both the timer and RTC interrupt
occurrence functions. If one or both of them are missing within a rough time frame, which
has to be estimated empirically, the function will return failed as result. This function also
checks the result of the timer check, which is performed by the RTC function.

Main - loop

Timer interrupt
(sourced by cpu

clk)

RTC interrupt.
(sourced by

independent clk)

Tests the timer interrupt speed

Tests the RTC occurrenceTests the timer occurrence

1 2

3

Fig 5. Clock system test flow

The second function is intended to be called from a timer interrupt service handler. This
Timer needs to have the same clock source as the CPU.

The last function is intended to be called from the RTC interrupt service handler. This
function is intended to check the frequency of the timer interrupts.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 25 of 76

The timer simply counts how often the timer interrupt has occurred. This value is then
checked by the RTC function. Additionally, it sets the occurrence semaphore, which is
used for occurrence recognition inside of the main function. See Fig 6.

Increment timer
count

Set occurrence
semaphore

Fig 6. Setting the occurrence semaphore

The RTC function also sets an occurrence semaphore, to be tested from the main
function. Then it checks the timer counter variable to be within the estimated boundaries.
The result of this check is stored into a result semaphore.

Set occurrence
semaphore

Timer counter within
boundaries?

Set result
semaphore

FALSE

Set result
semaphore TRUE

return

Fig 7. Setting semaphore and boundary check

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 26 of 76

Increment internal
mainloop counters

Check if Timer interrupt
occurred

Check if RTC interrupt
occurred

Set Result FALSESet Result TRUE

Return Result

(1)

(2)

Check result semaphore
(3)

Fig 8. Main-loop test flow

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 27 of 76

4.5.2 Test usage
4.5.2.1 IEC60335_B_ClockTest.h

File name Function prototyping

IEC60335_B_ClockTest.h void IEC60335_initClockTest
(
UINT32 timerOccThreshold,
UINT32 rtcOccThreshold,
UINT32 timerLowerBound,
UINT32 timerUpperBound
)

type_testResult IEC60335_Clocktest_MainLoopHandler(void)

void IEC60335_Clocktest_TimerIntHandler(void)

void IEC60335_Clocktest_RTCHandler(void)

The IEC60335_B_ClockTest.h file contains all prototypes needed for the ClockTest.

4.5.2.2 IEC60335_B_ClockTest.c

File name Type definition

IEC60335_B_ClockTest.c type_ClockTest
[1]

Functions

void IEC60335_resetClockTest(void)

void IEC60335_initClockTest
(
UINT32 timerOccThreshold,
UINT32 rtcOccThreshold,
UINT32 timerLowerBound,
UINT32 timerUpperBound
)

type_testResult IEC60335_Clocktest_MainLoopHandler(void)

void IEC60335_Clocktest_TimerIntHandler(void)

type_testResult IEC60335_Clocktest_MainLoopHandler(void)

void IEC60335_Clocktest_RTCHandler(void)

[1] Structure members described in Table 5

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 28 of 76

Table 5. type_ClockTest structure
Member name Description

UINT32 timerTestThreshold Used in the mainloop function, defines the number of calls to
start occurrence test

UINT32 rtcTestThreshold Used in the mainloop function, defines the number of calls to
start occurrence test

UINT32 rtcOccCounter Counter variable for the mainloop, if value reached the defined
threshold, the occurrence test is started

UINT32 timerOccCounter Counter variable for the mainloop, if value reached the defined
threshold, the occurrence test is started

BOOL timerOccured This bool will be set in the timer function, and is reset during
occurrence test

BOOL rtcOccured This bool will be set in the rtc function, and is reset during
occurrence test

UINT32 timerCounter The counter Variable, to test the timer to be within its
boundaries

UINT32 timerBoundLower The estimated minimum count of cycle occurrences (Threshold
for timer test).

UINT32 timerBoundUpper The estimated maximum count of cycle occurrences (Threshold
for timer test).

BOOL timerOutOfBounds Within this bool, the rtc timer test signals the error state to the
main function

BOOL timerCounterOverflow Reflects, if the TimerCounter overflows due to an error

Function:

void IEC60335_resetClockTest(void)

Purpose:

The IEC60335_resetClockTest function clears and resets all used Clock Test variables

Return value:

None

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 29 of 76

Function:

void IEC60335_initClockTest

(

UINT32 timerOccThreshold,

UINT32 rtcOccThreshold,

UINT32 timerLowerBound,

UINT32 timerUpperBound

)

Purpose:

This function initiates the various variables used during the Clock Test.

Input variables:

UINT32 timerOccThreshold

The timerOccThreshold variable initiates the threshold value that defines the number
of calls that started the timer occurrence test.

UINT32 rtcOccThreshold

The rtcOccThreshold variable initiates the threshold value that defines the number of
calls that started the RTC occurrence test.

UINT32 timerLowerBound

This variable sets the lower bound value of the number of timer or RTC test occurrences.

UINT32 timerUpperBound

This variable sets the upper bound value of the number of timer or RTC test occurrences.

Return value:

None

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 30 of 76

Function:

type_testResult IEC60335_Clocktest_MainLoopHandler(void)

Purpose:

This function represents the part of the IEC60335 Class B clock test that must be
executed within the main loop.

This function tests the following criteria:

• The clock test timer interrupts were triggered
• The clock test RTC interrupt was triggered
• In any of the two interrupts an error was detected.

Return value:

IEC60335_testPassed

IEC60335_testFailed

Important function notifications:
• This function must be called once inside the main loop.
• For this function, it is necessary to estimate the count of how often this function could

be called. This is important to find valid threshold values, which are used to test timer
and RTC interrupt occurrence.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 31 of 76

Function:

void IEC60335_Clocktest_TimerIntHandler(void)

Purpose:

This function is intended to use as timer interrupt service handler or to be called once
inside the timer interrupt service handler.

Return value:

None

Function:

void IEC60335_Clocktest_RTCHandler(void)

Purpose:

This function should be called inside the custom RTC interrupt service handler. It can't be
used as service handler by itself, because of the return value that has to be evaluated
after the call.

This function tests the timer-time-frame, in this case the CPU frequency.

Also, this function checks if the main loop function was called.

Return value:

None

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 32 of 76

4.6 Invariable memory Test (4.1)
4.6.1 Test description:

The invariable memory must be checked for single bit faults. During POST testing the
complete Flash memory where the user application is located gets tested.

During BIST testing it is advisable to test the Flash memory in smaller segments to
prevent the CPU from being blocked.

4.6.1.1 Multiple Input Signature Register

The NXP Cortex-M0 based devices within the LPC11x family have an integrated flash
module that incorporates a 128-bit signature generator, called the Multiple Input
Signature Register (MISR).

This MISR can be used for generating a signature of the used safety critical memory
region.

Since this module is integrated in the flash module, it generates a signature faster than
when implemented in software, decreasing the time required for the test.

A signature can be generated for any part of the Flash contents. The address range to be
used for the signature generation is defined by writing the start address to the FMSSTART
register and the stop address to the FMSSTOP register.

The flash address should first be aligned with a flash word (128 bits) in the array; this is
done by right - shifting the start and stop address by 4.

/* align flash address to refer the flash word in the array */
startAddr = (startAddr >> 4) & 0x0001ffff;
length = ((startAddr + length) >> 4) & 0x0001ffff;

/* write start address of the flash contents to the register*/
LPC_FMC->FMSSTART = startAddr;

/* write stop address of the flash contents to the register, start generating
the signature*/
LPC_FMC->FMSSTOP = length | MISR_START;

The signature generation is started by writing ‘1’ to the MISR_START bit (17) in the
FMSSTOP register.

Since the MISR is implemented in hardware, it is much faster than doing the same MISR
check in software. The time that the signature generation takes is proportional to the
address range for which the signature is generated.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 33 of 76

4.6.1.2 Signature generation time

A safe estimation for the duration of the signature generation is:

with Tcclk the core clock. See the device user manual for more information on the clock
system.

After completion of the hardware MISR the 128 bits signature can be read from the
FMSW0…FMSW3 registers.

4.6.1.3 Signature verification

The signatures generated by the hardware MISR must be verified and equal to the
reference signatures. The algorithm for deriving the reference signatures is illustrated in
the pseudo code below.

Sign_word0 = 0
Sign_word1 = 0
Sign_word2 = 0
Sign_word3 = 0

FOR address = FMSTART TO FMSTOP
{
nextSign_word0 = flashWord_word0 XOR (Sign_word0>>1) XOR (Sign_word1<<31)
nextSign_word1 = flashWord_word1 XOR (Sign_word1>>1) XOR (Sign_word2<<31)
nextSign_word2 = flashWord_word2 XOR (Sign_word2>>1) XOR (Sign_word3<<31)

nextSign_word3 = flashWord_word3 XOR (Sign_word3>>1)
XOR (Sign_word0 AND 1<<29) << 2
XOR (Sign_word0 AND 1<<27) << 4
XOR (Sign_word0 AND 1<<2) << 29
XOR (Sign_word0 AND 1<<0) << 31

Sign_word0 = nextSign0
Sign_word1 = nextSign1
Sign_word2 = nextSign2
Sign_word3 = nextSign3
}

Important notification:

The hardware MISR signature generator is blocking for the Flash, this means no flash
read or write access is possible during signature generation. The MISR Code should run
from SRAM. It is therefore advisable to make sure while using the hardware MISR the
flash will not be accessed.

4.6.1.4 CRC generator

The NXP Cortex-M0 based devices within the LPC12x family have a Cyclic Redundancy
Check (CRC) module integrated. The CRC generator with programmable polynomial
settings supports several CRC standards commonly used.

The following features are supported:
• Three common polynomials: CRC-CCITT, CRC-16, and CRC-32.

− CRC-CCITT: x16 + x12 + x5 + 1
− CRC-16: x16 + x15 + x2 + 1

()1360int +−×

+= FMSSTARTFMSSTOP

T
nsT

cclk
MISR

(1)

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 34 of 76

− CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
• Bit order reverse and 1’s complement programmable setting for input data and CRC

sum
• Programmable seed number setting.
• Accept any size of data width per write: 8, 16 or 32-bit.

The CRC module can be used for generating a signature of the used safety critical
memory region.

Since this module is integrated in the device, it generates a signature faster than when
implemented in software, decreasing the time required for the test. A signature can be
generated for any part of the Flash contents.

The device can be programmed for supporting a specific standard by using the following
setups:

CRC-CCITT set-up

Polynomial = x16 + x12 + x5 + 1
Seed Value = 0xFFFF
Bit order reverse for data input: NO
1's complement for data input: NO
Bit order reverse for CRC sum: NO
1's complement for CRC sum: NO
CRC_MODE = 0x0000 0000
CRC_SEED = 0x0000 FFFF

CRC-16 set-up

Polynomial = x16 + x15 + x2 + 1
Seed Value = 0x0000
Bit order reverse for data input: YES
1's complement for data input: NO
Bit order reverse for CRC sum: YES
1's complement for CRC sum: NO
CRC_MODE = 0x0000 0015
CRC_SEED = 0x0000 0000

CRC-32 set-up

Polynomial = x32+ x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
Seed Value = 0xFFFF FFFF
Bit order reverse for data input: YES
1's complement for data input: NO
Bit order reverse for CRC sum: YES
1's complement for CRC sum: YES
CRC_MODE = 0x0000 0036
CRC_SEED = 0xFFFF FFFF

After configuring the CRC engine by programming the parameters above in the MODE
and SEED registers, the data over which the signature needs to be calculated can be fed
sequentially to its WR_DATA input register. The resulting CRC signature can be read out
from the read only SUM register

4.6.1.5 Critical content

If there is a stored critical constant periodically used in critical calculations, then it is
necessary to check this variable before every usage.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 35 of 76

Refer to chapter 4.8 Secure Data storage.

4.6.1.6 Usage notes

There are the following possible definitions for the flash signature options:

LPC111x: MISR_FLASH_CRC
LPC12x: CCITT_FLASH_CRC, CRC16_FLASH_CRC, CRC32_FLASH_CRC

All of them are referenced within the LPC1xxx_TargetConfig.c file.

The values of the signatures depend on the compiler and linker version number, and may
need to be updated from the default values provided within the example application. The
computed values will also be different whenever any modifications are made inside the
application code.

To determine the signature, either:

• Run the test application once, to find out the actual signature, then substitute the
actual value into the appropriate #define directive.
For convenience, place a breakpoint at the routine check loop labels
(_misr_hw_sigcheck, _crc16_verify, _crc32_verify) within the file
IEC60335_B_FlashTestxxx.s, then copy the computed values back in the signature
definition;

• Calculate the signature automatically, and patch it in the desired location, by using
the build tools (if supported) or;

• Use a custom script to patch the image before it gets burned in flash.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 36 of 76

4.6.2 Test usage
This chapter explains how the invariable testing is implemented and can be used.

4.6.2.1 IEC60335_B_FlashTest.h
File name Function prototyping

IEC60335_B_FlashTest.h void StartHardSignatureGen
(
UINT32 startAddr,
UINT32 length,
FlashSign_t *ResultSign
);

void StartSoftSignatureGen
(
UINT32 startAddr,
UINT32 length,
FlashSign_t *ResultSign
);

type_testResult IEC60335_FLASHtest_BIST
(
UINT32 startAddr,
UINT32 length,
FlashSign_t *TestSign,
UINT8 selectHS
);

type_testResult IEC60335_testSignatures
(
FlashSign_t *sign1,
FlashSign_t *sign2
);

Type definition

FlashSign_t

Crc32Sig_t;

Crc16Sig_t;

CcittSig_t;

Definitions

FLASH_HARD_SIGN = 1

FLASH_SOFT_SIGN = 2

MISR_START = (1<<17)

EOM = (0x01<<2)

Functions:

All functions are described in detail in chapter 4.6.2.2

Type definitions:

A type FlashSign_t is defined; this type contains four UINT32 variables named
word0…word3. These four words represent the 128 bits used for the hardware and
software 128-bit signature generation.
The types Crc32Sig_t, Crc16Sig_t, CcittSig_t define the type of signature
used with the LPC12x devices for the various algorithms supported by the CRC engine.
Crc32Sig is a UINT32 type, whereas Crc16Sig_t and CcittSig_t are UINT16
variables.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 37 of 76

Definitions:

The various flash sizes (32, 64, 128, 256 or 512 kB) available on the NXP Cortex-M0
family are defined within the file IEC60335_B_Config.h (described in 4.8.3), as a
convenience to the user for determining the ranges of flash which can be tested within
the application.

The actual flash size for the chosen device can be specified in the definition of symbol
FLASH_SIZE within the target specific configuration header file included by
IEC60335_B_Config.h file.

There are two defines which differentiate between the hardware or software generation,
used by the IEC60335_FLASHtest_BIST function.

FLASH_HARD_SIGN indicates the usage of the hardware signature generator, and
FLASH_SOFT_SIGN the software signature generator, on the LPC11x (using the MISR).

MISR_START is the hardware MISR start bit in the FMC FMSSTOP register.

EOM is the END OF MISR status in the FMC STATUS register.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 38 of 76

4.6.2.2 IEC60335_B_FlashTest.c

File name Function prototyping

IEC60335_B_FlashTest.c void StartHardSignatureGen
(
UINT32 startAddr,
UINT32 length,
FlashSign_t *ResultSign
);

 void StartSoftSignatureGen
(
UINT32 startAddr,
UINT32 length,
FlashSign_t *ResultSign
);

 type_testResult IEC60335_FLASHtestMISR_BIST
(
UINT32 startAddr,
UINT32 length,
FlashSign_t *TestSign,
UINT8 selectHS
);

 type_testResult IEC60335_testMISRSignatures
(
FlashSign_t *sign1,
FlashSign_t *sign2
);

 Structure definitions

 FlashSign_t IEC60335_Flash_Sign_BIST

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 39 of 76

Function:

void StartHardSignatureGen

(

UINT32 startAddr,

UINT32 length,

FlashSign_t *ResultSign

);

Purpose:

This function starts the execution of the hardware signature generation. It will do the
signature generation from the start address (startAddr) with a length (length). After
completion the signature will be copied to the location the pResultSign pointer points
to.

Input variables:

UINT32 startAddr

This variable is the starting address of where the signature generation will start.

UINT32 length

The length variable is the region size to be used for the signature generation.

FlashSign_t *pResultSign

The result after generation completion will be put in the pointed location by the
pResultSign pointer.

Return value:

None

Important notification:

This function is BLOCKING. It blocks all access to the flash memory. It is advisable to
make sure no flash memory needs to be accessed during the execution of this function.
The time required for this function is explained in the test description chapter.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 40 of 76

Function:

void StartSoftSignatureGen

(

UINT32 startAddr,

UINT32 length,

FlashSign_t *ResultSign

);

Purpose:

This function starts the execution of the software signature generation. It will do the
signature generation from the start address (startAddr) with a length (length).

The algorithm explained in the test description chapter is used for generation of the
software signature.

This function can be used for the reference signature with which the hardware generated
signature must be equal to.

After completion the signature will be copied to the location the pResultSign pointer
points to.

Input variables:

UINT32 startAddr

This variable is the starting address of where the signature generation will start.

UINT32 length

The length variable is the region size used for the signature generation.

FlashSign_t *pResultSign

The result after generation completion will be put in the pointed location by the
pResultSign pointer.

Return value:

None

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 41 of 76

Function:

type_testResult IEC60335_FLASHtestMISR_BIST

(

UINT32 startAddr,

UINT32 length,

FlashSign_t *TestSign,

UINT8 selectHS

);

Purpose:

This is the general IEC60335 Flash test function for BIST on the LPC11x. It must
periodically be executed for testing the safety critical region. The start address and
region length is passed as well as the reference signature to which the newly generated
signature must match.

The user can select whether the hardware or software generator will be used during
Flash BIST.

The comparison of the reference signature and the generated signature is integrated in
this function and therefore it will return a pass or fail for this test.

Input variables:

UINT32 startAddr

This variable is the starting address of where the signature generation will start.

UINT32 length

The length variable is the region size used for the signature generation.

FlashSign_t *TestSign

Pointer to the reference signature.

UINT8 selectHS

Hardware or software signature generation selection byte, FLASH_HARD_SIGN or
FLASH_SOFT_SIGN should be used.

Return value:

IEC60335_testPassed

IEC60335_testFailed

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 42 of 76

Function:

type_testResult IEC60335_testMISRSignatures

(

FlashSign_t *sign1,

FlashSign_t *sign2

);

Purpose:

This function compares two signatures generated using the MISR algorithm on the
LPC11x and returns a pass or fail if equal or not.

Input variables:

FlashSign_t *sign1

Pointer to the first signature to be tested.

FlashSign_t *sign2

Pointer to the second signature to be tested.

Return value:

IEC60335_testPassed

IEC60335_testFailed

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 43 of 76

4.6.2.3 IEC60335_B_FLASHTestPOST_nnn.asm

File name Function prototyping

IEC60335_B_FLASHTestPOST_nnn.asm[1] _FLASHTestPOST

 Included Definitions
SELECTED_CRC_TYPE

IEC60335_BOTTOM_ROM_POST

IEC60335_TOP_ROM_POST

CRC_MODE_ADDR

CRC_SEED_ADDR

CRC_SUM_ADDR

CRC_WR_DATA_ADDR

FMSSTART_ADDR

FMSSTOP_ADDR

FMSW0_ADDR

FMSW1_ADDR

FMSW2_ADDR

FMSW3_ADDR

FMSTAT_ADDR

FMSTATCLR_ADDR

CRC_SIGNATURE_ADDR

MISR_SIGNATURE_ADDR

[1] The nnn in the .asm file names must be replaced by a compiler indicator.
gnu = GNU GCC compiler

arm = ARM Realview compiler

iar = IAR EWARM compiler

This file contains the POST testing routing of the used non volatile (flash) memory image
used by the application. It gives the user access to the Flash POST.

The routine is made available by means of the _FLASHTestPOST assembly label.

To configure the POST test, the user needs to define which type of signature test needs
to be performed at startup. The options are:

• CRC16_ALGO, CRC32_ALGO, CCITT_ALGO (usable on the LPC12x targets)
• MISRHW_ALGO (usable on the LPC11x targets)

The particular algorithm choice is defined by the symbol SELECTED_CRC_TYPE and is
specified in a target specific configuration header file (example:
LPC1227_TargetConfig.h), which the user needs to include within the global library
IEC60335_B_Config.h file (explained in more detail in section 4.8.3).

The actual range of memory being tested is determined by the symbols included from the
target specific configuration header file. These symbols are called
IEC60335_BOTTOM_ROM_POST and IEC60335_TOP_ROM_POST.

Note: these might be automatically determined by means of the symbols exported by the
tool chain used for generating (compiling, assembling, linking) the application code, as
shown in the example applications provided with the library.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 44 of 76

The memory address where the reference signature is stored is specified by the macros
called CRC_SIGNATURE_ADDR (used for a CRC type signature) or
MISR_SIGNATURE_ADDR (used for a MISR type signature).

These also both need to be specified within the target specific configuration header file.

Note: these symbols might be automatically determined by means of the symbols
determined and exported by the tool chain used for generating (compiling, assembling,
linking) the application code, as shown in the example applications provided by the
library. In the examples, the signature is located on the next 128 bit boundary just after
the end of the application image. This will leave the rest of the Flash memory available
for application specific use (which might be verified with BIST tests at runtime).

The POST test will compute the signature on the actual Flash contents, and compare it
with the reference signature located at address CRC_SIGNATURE_ADDR /
MISR_SIGNATURE_ADDR.

CRC_MODE_ADDR, CRC_SEED_ADDR, CRC_SUM_ADDR, CRC_WR_DATA_ADDR
are macros which include in the IEC60335_B_FLASHTestPOST_nnn.asm assembly
module the register addresses specific to the CRC engine available in the LPC12xx
family of devices.

Note: the actual values (register addresses) of these macros are predefined within the
IEC60335_B_Config.h file, and apply to the current LPC12xx family of devices. The user
has the option to override those values if needed. This ensures compatibility of the library
for future devices in which the actual address assignment might be different than the
ones available at the time the library is released.

FMSSTART_ADDR, FMSSTOP_ADDR, FMSW0_ADDR, FMSW1_ADDR,
FMSW2_ADDR, FMSW3_ADDR, FMSTAT_ADDR, FMSTATCLR_ADDR are macros
which include in the assembly module IEC60335_B_FLASHTestPOST_nnn.asm the
register addresses which are specific to the MISR engine available in the LPC11xx family
of devices.

Note: the actual values (register addresses) of these macros are predefined within the
IEC60335_B_Config.h file, and apply to the current LPC11xx family of devices. The user
has the option to override those values if needed. This ensures compatibility of the library
for future devices in which the actual address assignment might be different than the
ones available at the time the library is released.

Note that while performing the MISR algorithm computation, a part of the test will be
BLOCKING. It blocks all access to the flash memory until the MISR engine has
completed the generation of the signature.

Important file or function notifications:
• The FLASHTestPOST function must be executed prior to the branch to main. It should

also execute in Privileged Thread mode.
• After test execution, and all included tests pass, the variable type_testResult
FlashPostTestStatus will be set to IEC60335_testPassed = 1

• The variable FlashPostTestStatus must be defined by the user but can be
located in any software module which is part of the application code, as long as its
scope is made visible (so it cannot be declared as a C static variable). This status
variable should preferably be defined in a dedicated module, which the user could

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 45 of 76

place in a specific section of the device RAM memory, according to its application
requirements.

• The variable FlashPostTestStatus should be defined as being “not initialised”,
to prevent its value being changed by the application initialisation code before
reaching main, so that the POST test result is preserved. This is tool chain specific
and left to the user.

• In case of failure during test execution, the variable type_testResult
FlashPostTestStatus will be set to IEC60335_testPassed = 0

• In case of failure, the function will behave in the following way:
− (default) The CPU will be kept in a safe state, executing an infinite loop.

This behavior can be overridden by the user application, by re-defining the
function _flashPostTestFailureHook in an assembly module included within
the application code.

− (application specific) The function flashPostTestFailureHook is an optional
assembly function, located in a module included in the user application.

This allows the system to perform different or additional recovery actions than the one
described in point 1 above.
• An MISR type of signature should be located in memory at an address which is

aligned to (a multiple of) 16 bytes (128 bits) because of the MISR hardware
requirements.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 46 of 76

4.7 Variable Memory (4.2)
4.7.1 Test description

The variable memory (SRAM) must be tested for direct coupling and stuck-at faults. A
pattern therefore must be written and checked. This pattern is chosen such that it could
determine not only stuck-at faults but also direct coupling and even retention faults.
The March test algorithm is developed for efficient testing and detecting direct coupling
and stuck-at faults in the variable memory, or in this case RAM, array.

The March algorithm used during the variable memory testing is depicted in Fig 10. The
algorithm can be divided in 8 individual tests, called March tests 0 to 8. Each test has an
even and an odd test.

Even represents even addressing and odd, odd addressing during the test; this is
indicated as nnnn in Fig 9. Increasing and decreasing addressing is indicated by use of
an up pointing or down pointing arrow. Read or write execution is indicated by r or w.

There are two patterns used during the variable memory test, the dbg (0x5555.5555) and
the dbgN (0xAAAA.AAAA) pattern. The pattern layout depends on the invariable memory
structure.

March x_nnnn y
0x00

0xFF

y = r (Read) or w (Write)
x = March test number, nnnn = even or odd address

Read/Write direction, incremental, decremental

10101010 = Pattern dbgN, 0xAAAA.AAAA
01010101 = Pattern dbg, 0x5555.5555

Fig 9. Algorithm flow-diagram test example

This algorithm is designed to cover both stuck-at faults and direct coupling faults in the
fastest possible way.

March 0 and 1 test in increasing addressing order whether the full tested variable
memory region dbg pattern is written and read correctly. This covers stuck-at 0 faults at
the even bits and stuck-at 1 faults at the odd bits in the data words.

March test 2 tests in decreasing addressing order the stuck-at 0 faults at the odd bits and
the stuck-at 1 faults in the even bits. It also tests the retention of the charged cells when
loaded with the dbg pattern. It also takes the direct coupling in account.

March test 3 and 4 test in increasing order the inversion of March tests 0 and 1, where
March test 5 does the same for test 2.

March tests 6, 7 and 8 are testing in increasing and decreasing addressing order the
direct coupling more extensively.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 47 of 76

March 0

01010101
01010101
01010101
01010101

0x00

0xFF

March 1_even

01010101
01010101
01010101
01010101

0x00

0xFF

w

r March 1_even

01010101

01010101

0x00

0xFF

w
10101010

10101010

March 1_odd

01010101

01010101

0x00

0xFF

r
10101010

10101010

March 1_odd

0x00

0xFF

w
10101010

10101010
10101010

10101010

March 2_even

0x00

0xFF

r
10101010

10101010
10101010

10101010

March 2_even

0x00

0xFF

w

10101010

10101010

01010101

01010101

5x r March 2_odd

0x00

0xFF

r

10101010

10101010

01010101

01010101

March 2_odd

0x00

0xFF

w
01010101

01010101
01010101

01010101

5x r

March 3_even

0x00

0xFF

r
01010101

01010101
01010101

01010101

March 3_even

0x00

0xFF

w

01010101

01010101

10101010

10101010

March 3_odd

0x00

0xFF

r

01010101

01010101

10101010

10101010

March 3_odd

0x00

0xFF

w
10101010

10101010
10101010

10101010

March 4_even

0x00

0xFF

r March 4_even

0x00

0xFF

w
01010101

01010101
10101010

10101010

March 4_odd

0x00

0xFF

r March 4_odd

0x00

0xFF

w
10101010

10101010
10101010

10101010

01010101

01010101
10101010

10101010
01010101

01010101
01010101

01010101

March 5_even

0x00

0xFF

r March 5_even

0x00

0xFF

w
10101010

10101010

5x r March 5_odd

0x00

0xFF

r March 5_odd

0x00

0xFF

w 5x r
01010101

01010101
01010101

01010101

01010101

01010101

10101010

10101010
01010101

01010101

10101010

10101010
10101010

10101010

March 6_even

0x00

0xFF

w March 6_even

0x00

0xFF

w

10101010

10101010

01010101

01010101
10101010

10101010

r
10101010

10101010

March 6_odd

0x00

0xFF

w March 6_odd

0x00

0xFF

w
10101010

10101010
01010101

01010101 10101010

10101010

r
10101010

10101010

March 7_even

0x00

0xFF

r March 7_even

0x00

0xFF

w
01010101

01010101
10101010

10101010

March 7_odd

0x00

0xFF

r March 7_odd

0x00

0xFF

w

10101010

10101010

10101010

10101010

01010101

01010101
10101010

10101010
01010101

01010101
01010101

01010101

March 8_even

0x00

0xFF

w March 8_even

0x00

0xFF

w
10101010

10101010
01010101

01010101

r March 8_odd

0x00

0xFF

w March 8_odd

0x00

0xFF

w

10101010

10101010
01010101

01010101
r

01010101

01010101
01010101

01010101

01010101

01010101
01010101

01010101

March x_nnnn y
0x00

0xFF

y = r (Read) or w (Write)
x = March test number, nnnn = even or odd address

Read/Write direction, incremental, decremental

10101010 = Pattern dbgN, 0xAAAA.AAAA
01010101 = Pattern dbg, 0x5555.5555

Fig 10. Visual representation of the March test algorithm

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 48 of 76

4.7.2 Test usage
4.7.2.1 IEC60335_B_RAMTest.h

File name Function prototyping

IEC60335_B_RAMTestBIST.h extern type_testResult IEC60335_RAMtest
(
UINT32 startAddrs,
UINT32 length
);

extern type_testResult IEC60335_RAMtest_BIST
(
UINT32 startAddrs,
UINT32 length
);

The IEC60335_B_RAMTestBIST.h file prototypes all the functions needed for
executing the March BIST test on a selected range of RAM. The two functions prototyped
are used for implementation of the RAM test in the user code.
IEC60335_RAMtest_BIST is a predefined function simplifying the implementation.
These functions will be described in detail in the following chapter.

The PATTERN (0x5555.5555) used during the March tests on the RAM is defined within
the IEC60335_B_Config.h file (explained in more detail in section 4.8.3). The inversion of
the defined pattern is generated while running the test.

Important notification:
• The PATTERN definition is the best pattern to be used for testing the NXP ARM

Cortex-M0 family RAM and therefore should not be changed.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 49 of 76

4.7.2.2 IEC60335_B_RAMTest.c

File name Functions

IEC60335_B_RAMTest.c type_testResult IEC60335_marchIncr
(
UINT32 startAddrs,
UINT32 length,
UINT32 *pntr,
UINT32 pat,
UINT8 rd_cntr,
UINT8 wr_cntr
)

type_testResult IEC60335_marchDecr
(
UINT32 startAddrs,
UINT32 length,
UINT32 *pntr,
UINT32 pat,
UINT8 rd_cntr,
UINT8 wr_cntr
)

type_testResult IEC60335_RAMtest
(
UINT32 startAddrs,
UINT32 length
)

type_testResult IEC60335_RAMtest_BIST
(
UINT32 startAddrs,
UINT32 length
)

IEC60335_B_RAMTest.c contains the functions for executing the March RAM BIST
test. The functions will be explained in detail in the following paragraphs.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 50 of 76

Function:
type_testResult IEC60335_marchIncr
(
UINT32 startAddrs,
UINT32 length,
UINT32 *pntr,
UINT32 pat,
UINT8 rd_cntr,
UINT8 wr_cntr

)

Purpose:

This function takes care of the incrementing March tests. It will do the write and read
operations to the memory range that is tested.

Input variables:

UINT32 startAddrs

Defines the start address of the memory range to be tested

UINT32 length

Defines the length of the memory range to be tested

UINT32 *pntr

Pointer to the current address tested.

UINT32 pat

Contains the pattern that will be written to the address tested.

UINT8 rd_cntr

With this variable the number of read cycles of the tested memory range can be defined.

UINT8 wr_cntr

With this variable the number of write cycles of the tested memory range can be defined.

Return value:

IEC60335_testPassed

IEC60335_testFailed

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 51 of 76

Function:
type_testResult IEC60335_marchDecr
(
UINT32 startAddrs,
UINT32 length,
UINT32 *pntr,
UINT32 pat,
UINT8 rd_cntr,
UINT8 wr_cntr

)

Purpose:

This function takes care of the decrementing March tests. It will do the write and read
operations to the memory range that is tested. Testing will start at startAddrs +
length counting down to startAddrs.

Input variables:

UINT32 startAddrs

Defines the start address of the memory range to be tested. It points to the lowest
address.

UINT32 length

Defines the length of the memory range to be tested

UINT32 *pntr

Pointer to the current address tested.

UINT32 pat

Contains the pattern that will be written to the address tested.

UINT8 rd_cntr

With this variable the number of read cycles of the tested memory range can be defined.

UINT8 wr_cntr

With this variable the number of write cycles of the tested memory range can be defined.

Return value:

IEC60335_testPassed

IEC60335_testFailed

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 52 of 76

Function:
type_testResult IEC60335_RAMtest
(
UINT32 startAddrs,
UINT32 length

)

Purpose:

This function executes sequentially the nine March tests. The user can use this function
to execute a RAM test on a defined memory range.

Input variables:

UINT32 startAddrs

Defines the start address of the memory range to be tested. It points to the lowest
address.

UINT32 length

Defines the length of the memory range to be tested

Return value:

IEC60335_testPassed

IEC60335_testFailed

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 53 of 76

Function:
type_testResult IEC60335_RAMtest_BIST
(
UINT32 startAddrs,
UINT32 length

)

Purpose:

This function executes sequentially the nine March tests in BIST-mode. The user can use
this function to execute a RAM test on a defined memory range.

Input variables:

UINT32 startAddrs

Defines the start address of the memory range to be tested. It points to the lowest
address.

UINT32 length

Defines the length of the memory range to be tested

Return value:

IEC60335_testPassed

IEC60335_testFailed

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 54 of 76

4.7.2.3 IEC60335_B_ RAMTestPOST_nnn.asm

File name Function prototyping

IEC60335_B_RAMTestPOST_nnn.asm[1] _RAMTestPOST

 Included Definitions
IEC60335_BOTTOM_RAM_POST_MARCH

IEC60335_TOP_RAM_POST_MARCH

This file contains the POST testing routing of the volatile (Flash) memory image used by
the application. It gives the user access to the RAM POST.

The routine is made available by means of the _RAMTestPOST assembly label.

The POST test will perform the full March test suite described in section 4.7.2.

To configure the ram POST test, the user needs to define the memory range over which
the test will be performed. This is specified in a target specific configuration header file
(example: LPC1227_TargetConfig.h), which the user needs to include within the global
library IEC60335_B_Config.h file (explained in more detail in section 4.8.3).

The actual range of memory being tested is determined by the symbols included from the
target specific configuration header file. These symbols are called:

• IEC60335_BOTTOM_ROM_POST_MARCH: this defines the start address of the
memory being tested.

• IEC60335_TOP_ROM_POST_MARCH: this defines the limit of the memory range
being tested, i.e. is equal to the sum of the start address plus the size of the volatile
memory.

Example: for the LPC1227, which has 8 kB of RAM memory,
IEC60335_TOP_ROM_POST_MARCH would be set to 0x1000 0000 + 0x2000 = 0x1000
2000.

Note: these symbols might be automatically determined by means of the symbols
exported by the tool chain used for generating (compiling, assembling, linking) the
application code, as shown in the example applications provided with the library.

Important file or function notifications:
• The RAMTestPOST function must be executed prior to the branch to main. It should

also execute in Privileged Thread mode.
• After test execution, and all included tests pass, the variable type_testResult
RamPostTestStatus will be set to IEC60335_testPassed = 1

• The variable RamPostTestStatus needs to be defined by the user and can be
located in any software module which is part of the application code, as long as its
scope is made visible (so it cannot be declared as a C static variable). This status
variable should preferably be defined in a dedicated module, which the user could
place in a specific section of the device RAM memory, according to its application
requirements.

• The variable RamPostTestStatus should be defined as being “not initialised”, to
prevent its value being changed by the application initialisation code before reaching

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 55 of 76

main , so that the POST test result is preserved. This is tool chain specific and left to
the user.

• In case of failure during test execution, the variable type_testResult
RamPostTestStatus will be set to IEC60335_testPassed = 0

• In case of failure, the function will behave in the following way:
• (default) The CPU will be kept in a safe state, executing an infinite loop.

This behavior can be overridden by the user application, by re-defining the
function _ramPostTestFailureHook in an assembly module included within
the application code.

• (application specific) The function _ramPostTestFailureHook is an optional
assembly function, located in a module included in the user application.

This allows the system to perform different or additional recovery actions than the one
described in point 1 above.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 56 of 76

4.8 Secure Data Storage (5.1)
4.8.1 Test description

The Library delivers mechanisms to safely use critical data.

Critical data could be variables used in important calculations or structures of
configuration data. Such data must be checked before usage.

There are two ways to handle critical data:

1. Intended for native data types, such as UINT32, INT16 or float.

2. Intended to be used for complex data types such as structures or unions.

For the native data types, there are defined structures, wherein the variable will be
saved, together with its complement. To handle these structures, there are defined
function-like macros for initialisation, writing, reading and checking such a variable.
Function-like macros are used because they are type-independent.

Return the Variable

Fig 11. The read macro

Safe the Variable into the
struct and biuld ist

complement to save it

Fig 12. The write macro

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 57 of 76

Variable ==
~VariablesComplement?

Return TRUE Return FALSE

Fig 13. The check macro

For initialization, there is a special macro to ease the usage. It is a function-like macro
intended for use with global critical data that is declared outside functions.

#define IEC60335_CriticalDataInitialise(value) \
 {value, ~value}
}

To initialise critical data inside of functions, use the write macro.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 58 of 76

4.8.2 Usage
For elementary data types, structures and function macros are defined. To use such a
single critical elementary data type, a suitable structure must be defined and initialised
with default values.

System malfunction must be prevented by checking each critical variable before using it.
If the content of this variable changes, the write macro will handle the recalculation of the
mirror inside the structure.

There is also a possibility to instantiate complex data types.

All critical variables can be placed into a special section of the RAM; the test can be
solved with a call of the RAM test function, pointing to the content containing the critical
data. This allows for a couple of possibilities to check the correctness of your critical data
content.

Use the macro IEC60335_CriticalDataInitialise to initialise a new instance of a
critical variable.

If you instance a critical variable without initialising immediately with a value, you must
initialise it with the function IEC60335_CriticalDataWrite. The macro
IEC60335_CriticalDataInitialise will only work on initialising within the line
which declares the new instance.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 59 of 76

4.8.2.1 IEC60335_B_SecureDataStorage.h

File name Type definitions

IEC60335_B_SecureDataStorage.h typedef struct tag_secured_FLOAT64
{
FLOAT64 data;
FLOAT64 mirror;
} type_secured_FLOAT64;

typedef struct tag_secured_FLOAT32
{
FLOAT32 data;
FLOAT32 mirror;
} type_secured_FLOAT32;

typedef struct tag_secured_UINT64
{
UINT64 data;
UINT64 mirror;
} type_secured_UINT64;

typedef struct tag_secured_UINT32
{
UINT32 data;
UINT32 mirror;
} type_secured_UINT32;

typedef struct tag_secured_INT32
{
INT32 data;
INT32 mirror;
} type_secured_INT32;

typedef struct tag_secured_UINT16
{
UINT16 data;
UINT16 mirror;
} type_secured_UINT16;

typedef struct tag_secured_INT16
{
INT16 data;
INT16 mirror;
} type_secured_INT16;

typedef struct tag_secured_UINT8
{
UINT8 data;
UINT8 mirror;
} type_secured_UINT8;

typedef struct tag_secured_INT8
{
INT8 data;
INT8 mirror;
} type_secured_INT8;

Macro definition

IEC60335_CriticalDataCheck(criticalVar)

IEC60335_CriticalDataRead(criticalVar)

IEC60335_CriticalDataWrite(criticalVar, value)

IEC60335_CriticalDataInitialise(value)

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 60 of 76

4.8.3 IEC60335_B_Config.h

File name Definitions

IEC60335_B_Config.h SIZE32K
SIZE64K
SIZE128K
SIZE256K
SIZE512K

CCITT_ALGO
CRC16_ALGO
CRC32_ALGO
MISRHW_ALGO

PATTERN

FMSSTART_ADDR
FMSSTOP_ADDR
FMSW0_ADDR
FMSW1_ADDR
FMSW2_ADDR
FMSW3_ADDR
FMSTAT_ADDR
FMSTATCLR_ADDR

CRC_MODE_ADDR
CRC_SEED_ADDR
CRC_SUM_ADDR
CRC_WR_DATA_ADDR

Included files (depending on target build rule)

LPC1114_TargetConfig.h
LPC1227_TargetConfig.h

This header file is a global configuration file for the library, which:
• Predefines some global values which are independent of the target device:

1 SIZE32K 0x00007FFF

2 SIZE64K 0x0000FFFF

3 SIZE128K 0x0001FFFF

4 SIZE256K 0x0003FFFF

5 SIZE512K 0x0007FFFF

6 CCITT_ALGO 1

7 CRC16_ALGO 2

8 CRC32_ALGO 3

9 MISRHW_ALGO 4

10 PATTERN 0x55555555

Note: the definitions for items 1 to 10 should never be changed or overridden by

the user configuration file

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 61 of 76

• Predefines some macros used to define hardware addresses relative to the CRC and
MISR engines on the actual LPC12xx and LPC11xx family of microcontrollers:

11 FMSSTART_ADDR TARGET_FMSSTART EQU 0x4003C020

12 FMSSTOP_ADDR TARGET_FMSSTOP EQU 0x4003C024

13 FMSW0_ADDR TARGET_FMSW0 EQU 0x4003C02C

14 FMSW1_ADDR TARGET_FMSW1 EQU 0x4003C030

15 FMSW2_ADDR TARGET_FMSW2 EQU 0x4003C034

16 FMSW3_ADDR TARGET_FMSW3 EQU 0x4003C038

17 FMSTAT_ADDR TARGET_FMSTAT EQU 0x4003CFE0

18 FMSTATCLR_ADDR TARGET_FMSTATCLR EQU 0x4003CFE8

19 CRC_MODE_ADDR TARGET_CRC_MODE_ADDR EQU 0x50070000

20 CRC_SEED_ADDR TARGET_CRC_SEED_ADDR EQU 0x50070004

21 CRC_SUM_ADDR TARGET_CRC_SUM_ADDR EQU 0x50070008

22 CRC_WR_DATA_ADDR TARGET_WD_DATA_ADDR EQU 0x50070008

The table above shows the definition for the IAR and ARM compilers, an alternative for
the GNU compiler is provided in the header file as well.

Note: the definitions for items 11 to 22 should not be changed or overridden by
the user configuration file, for the actual family of LPC11x microcontrollers.
It shall be verified by the user and eventually adapted, for more recent devices (in
respect to the library release date), according to the hardware address values
given in the specific device datasheet.

• Includes a target specific header file, which provides the mandatory target specific

configuration parameters in order to use the library functions on the specific device.
Within the example code shipping with the library, two template files are provided for
LPC1227 and LPC1114 (LPC1227_TargetConfig.h and LPC1114_TargetConfig.h).
The user may adapt the settings within those files, to change the symbol definitions
for a different target or configuration.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 62 of 76

4.8.4 LPC1xxx_TargetConfig.h
This type of file is included by the library global header file IEC60335_B_Config.h.

Within this file, target specific options need to be defined in order to configure the library.

The following symbols need to be defined:
Flash POST test

• IEC60335_BOTTOM_ROM_POST

• IEC60335_TOP_ROM_POST

• SELECTED_CRC_TYPE

• CRC_SIGNATURE_ADDR

• MISR_SIGNATURE_ADDR

RAM POST test

• IEC60335_TOP_RAM_POST_MARCH

• IEC60335_BOTTOM_RAM_POST_MARCH

Those symbols can be either hard coded or determined from the tool chain configuration
(compiler, assembler, linker) being used. Resolving the symbols in numeric values is tool
chain dependant and left to the user.

The examples provided with the library demonstrate how those symbols can be defined.

Modifying the settings above from within this header file does not change the functionality
of the library but determines only the parameters which the specific tests will use.

The user needs to carefully specify the test parameters according to the requirements
specified in the relative sections of this document.

For a description of the symbols, please refer to the relevant test descriptions within this
document.

Important file or function notifications:

CRC_SIGNATURE_ADDR and MISR_SIGNATURE_ADDR both need to be defined,
independent of the target.

However CRC_SIGNATURE_ADDR will be effectively used only for the POST CRC
algorithms, whereas MISR_SIGNATURE_ADDR will be effectively used only for the
POST MISR algorithms.

5. Tested peripheral detailed description

5.1 CPU, the Cortex-M0
The processor or central processing unit (CPU) of the NXP Cortex-M0 microcontrollers
uses the ARM Cortex-M0 version r0p0 core, which is an implementation of the ARMv6-M
architecture, developed by ARM Ltd.

The Cortex-M0 processor is built on a high-performance processor core, with a 3-stage
pipeline von Neumann architecture, making it ideal for demanding embedded
applications. The processor is extensively optimized for low power and area, and delivers
exceptional power efficiency through its efficient instruction set, providing high-end
processing hardware including either:

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 63 of 76

• a single-cycle multiplier, in designs optimized for high performance
• a 32-cycle multiplier, in designs optimized for low area.

The Cortex-M0 processor implements the ARMv6-M architecture that implements the
ARMv6-M Thumb instruction set, including Thumb-2 technology. This provides the
exceptional performance expected of a modern 32-bit architecture, with a higher code
density than other 8-bit and 16-bit microcontrollers.

The Cortex-M0 processor closely integrates a configurable Nested Vectored Interrupt
Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

• includes a non-maskable interrupt (NMI)
• provides:

− a zero-jitter interrupt option
− four interrupt priority levels.

The tight integration of the processor core and NVIC provides fast execution of interrupt
service routines (ISRs), dramatically reducing the interrupt latency. This is achieved
through the hardware stacking of registers, and the ability to abandon and restart load-
multiple and store-multiple operations. Interrupt handlers do not require any assembler
wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization
also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with sleep mode. Optionally, sleep
mode support can include a deep sleep function that enables the entire device to be
rapidly powered down.

Fig 14. Detailed Cortex-M0 core block diagram

5.2 CPU registers and Program counter
Cortex-M0 r0p0 core [8] has 13 general-purpose registers [r0-r12], which can be divided
by two sets of registers: the low and high registers. The low registers are accessible by
all instructions that specify a general-purpose register and the high registers are only
accessible by 32-bit instructions.

Besides the general-purpose registers, r13-r15 has some special functions. Register r13
is the Stack pointer, a banked alias for the SP_main and SP_process registers. The

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 64 of 76

handler mode will always use the SP_main, but can be configured in Thread mode to use
either SP_main or SP_process.

The Link register is located at r14, this register receives the address from the Program
Counter (PC) when a Branch and Link (BL) or a Branch and Link with Exchange (BLX)
instruction is executed. All other times r14 is a general-purpose register.

The last of the general registers is r15, the PC.

Fig 15. Cortex M0 core register set

The processor also has some status registers that can be divided in three categories at
system level. These are the Application Processor Status Register (APSR), the Interrupt
Processor Status Register (IPRS) and the Execution Processor Status Register (EPSR).
For a detailed description see the Cortex-M0 r0p0 Technical Reference Manual[4].

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 65 of 76

5.3 Interrupt handling and execution
The ARM Cortex-M0 core incorporates a Nested Interrupt Controller (NVIC) that is
closely integrated with the core to achieve low latency interrupt processing. The NVIC of
the NXP ARM Cortex-M0 families has the following features:

• An implementation-defined number of interrupts, in the range 1-32.
• Programmable priority levels of 0-192 in steps of 64 for each interrupt. A higher level

corresponds to a lower priority, so level 0 is the highest interrupt priority.
• Level and pulse detection of interrupt signals.
• Interrupt tail-chaining.
• An external NMI.

For a detailed description of the NVIC controller see the Cortex-M0 r0p0 Technical
Reference Manual, Chapter 4.2 “Nested Vectored Interrupt controller” [4].

For details on the usage of the NVIC in the NXP ARM Cortex-M0 families, see the
“Nested Vectored Interrupt Controller” and the “Cortex-M0 User Guide” chapters in the
product User Manual.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 66 of 76

5.4 Clock domains
Note this chapter is only applicable for the NXP Cortex-M0 family members with an
RTC.

There are three separate clock domains in the clock generation unit: the sysconfig
domain, the watchdog timer domain and the Real time clock domain which is actually in
the Power management Unit (PMU) domain.

SYSCONFIG domain

The sysconfig domain creates the main clock sources needed, e.g. the core and the
various peripherals.

Fig 16. LPC1200 Clock generation unit

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 67 of 76

Watch dog domain

The watchdog domain gives the user the possibility to select either the 12 MHz internal
RC (IRC) oscillator or the internal 400 kHz watchdog oscillator as clock source for the
watchdog.

The RTC domain

The NXP Cortex-M0 family has an RTC sub-system that has a separate power domain,
and is clocked by a dedicated 32 kHz ultra low power RTC oscillator.

Features:
• Dedicated 32 kHz ultra low power oscillator.
• Uses 1 Hz clock, delayed 1 Hz clock, 1 kHz clock, or peripheral RTC clock as inputs.
• Uses 1 Hz clock to count in one second intervals.
• 32-bit counter.
• Programmable 32-bit match/compare register.
• Software maskable interrupt when counter and match registers are identical.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 68 of 76

5.5 Memory
This chapter describes the memory in the NXP Cortex-M0 family. The memory size for
both variable and invariable memory depends on the family member selected.

5.5.1 ARM Cortex-M0 Memory map
The ARM Cortex-M0 processor memory architecture is different from the traditional ARM
processors.

The following new features are implemented:
• Predefined memory map
• Bit Band support

− This feature provides atomic operations to bit data in memory and peripherals
• Big and little endian memory configuration support.

For detailed information on the ARM Cortex-M0 memory architecture and model please
see the Cortex-M0 r0p0 Technical Reference Manual, Chapter 3.4 “Memory Model”.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 69 of 76

Fig 17. The Cortex-M0 predefined memory map

5.5.2 NXP Cortex-M0 memory map
The NXP Cortex-M0 family members offer a wide variety of memory sizes. These are all
mapped according the ARM Cortex-M0 memory map. The invariable memory is placed in
the low address range, starting at address 0x0000.0000, for all NXP Cortex-M0 family
members. The invariable memories are placed in various regions.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 70 of 76

5.5.3 Invariable memory (flash)
Depending on the NXP Cortex-M0 device, the flash ranges from 8 kB up to 64 kB. The
invariable memory of the NXP Cortex-M0 family members are all mapped to the starting
address 0x0000 0000.

5.5.3.1 Multiple Input Signature Register (MISR)

The flash module contains a built-in signature generator. This generator can produce a
128-bit signature placed in the Multiple Input Signature Register (MISR) from a user
defined range of the flash memory. Typically, the flashed contents are verified against a
calculated signature (e.g., during programming). Since the MISR is implemented in
hardware and executed on the core clock frequency it is a faster method of creating a
signature of the flash content for content verification.

As described in chapter 4.6.1.1 the algorithm used during the MISR calculation is known,
therefore the signature can be calculated in advance and used for comparison.

Since the MISR is implemented in hardware, it must be tested for correct signature
generation prior to usage. The algorithm used for the hardware is therefore also
implemented in software.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 71 of 76

5.5.4 Variable memory
The NXP Cortex-M0 family has a variety of variable memory sizes starting from 2 kB.

The NXP Cortex-M0 devices have only one variable memory implemented, located in the
code region of the ARM Cortex-M0 memory map, called the ‘local SRAM’.

The local SRAM is placed in the invariable memory region; the code region. This allows a
no latency fetch of the data and instructions in this SRAM region. It is even capable of
pre-fetching. These two factors increase the performance of this SRAM region.

Fig 18. A part of the LPC1200 simplified block diagram

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 72 of 76

6. Reference list
[1] CEI/IEC 60335-1:2001+A1:2004+A2:2006, Household and similar electrical

appliances Safety

[2] IEC 60730-1:1999+A1:2003+A2:2007(E), Automatic electrical controls for
household and similar use

[3] The ARM website (http://www.arm.com)

[4] ARM Limited, Cortex-M0 r0p0 Technical Reference Manual, ARM DUI 0497A

[5] Yiu, Joseph, The definitive guide to the ARM Cortex-M0, 1st edition, Newnes

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 73 of 76

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

7.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 74 of 76

8. List of figures

Fig 1. The Cortex-M0 core .. 6
Fig 2. Program counter test function placement

example .. 15
Fig 3. PC POST (left) and PC BIST (right) test flow

diagram ... 16
Fig 4. Interrupt test diagram 19
Fig 5. Clock system test flow 24
Fig 6. Setting the occurrence semaphore 25
Fig 7. Setting semaphore and boundary check 25
Fig 8. Main-loop test flow .. 26
Fig 9. Algorithm flow-diagram test example 46
Fig 10. Visual representation of the March test

algorithm ... 47
Fig 11. The read macro ... 56
Fig 12. The write macro .. 56
Fig 13. The check macro .. 57
Fig 14. Detailed Cortex-M0 core block diagram 63
Fig 15. Cortex M0 core register set 64
Fig 16. LPC1200 Clock generation unit 66
Fig 17. The Cortex-M0 predefined memory map 69
Fig 18. A part of the LPC1200 simplified block diagram

 .. 71

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

AN11208 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1.1 — 22 January 2014 75 of 76

9. List of tables

Table 1. IEC60335 Class B tests as defined by
IEC60730 Annex H ... 5

Table 2. CPU register BIST functions 12
Table 3. CPU register test table 14
Table 4. Type_InterruptTest type description 21
Table 5. type_ClockTest structure 28

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

NXP Semiconductors AN11208
 Cortex-M0 IEC60335 Class B library

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 January 2014
Document identifier: AN11208

10. Contents

1. Introduction ... 3
1.1 How to read this application note 3
2. IEC60335 Class B .. 4
2.1 Software classification .. 4
2.2 Class B components .. 5
3. NXP ARM Cortex-M0 microcontrollers 6
3.1 The NXP ARM Cortex-M0 microcontrollers 6
3.1.1 The ARM Cortex-M0 core 6
3.2 Product options .. 7
4. IEC60335 Class B library 8
4.1 POST and BIST ... 8
4.2 CPU Register Test (1.1) 9
4.2.1 Test description .. 9
4.2.1.1 Failure .. 9
4.2.2 Test usage ... 10
4.2.2.1 IEC60335_B_CPUregTest.h 10
4.2.2.2 IEC60335_B_CPUregTest.c 11
4.2.2.3 IEC60335_B_CPUregTestBIST_nnn.asm........ 12
4.2.2.4 IEC60335_B_CPUregTestPOST_nnn.asm 13
4.2.2.5 CPU register test numbers 14
4.3 Program Counter (PC) Test (1.3) 15
4.3.1 Test description .. 15
4.3.2 Test usage ... 17
4.3.2.1 IEC60335_B_ProgramCounterTest.h 17
4.3.2.2 IEC60335_B_ProgramCounterTest.c 17
4.4 Interrupt Handling and Execution Test (2) 19
4.4.1 Test description .. 19
4.4.2 Test usage ... 20
4.4.2.1 IEC60335_B_Interrupts.h 20
4.4.2.2 IEC60335_B_Interrupts.c 21
4.5 Clock System Test (3) 24
4.5.1 Test description .. 24
4.5.2 Test usage ... 27
4.5.2.1 IEC60335_B_ClockTest.h 27
4.5.2.2 IEC60335_B_ClockTest.c 27
4.6 Invariable memory Test (4.1) 32
4.6.1 Test description: ... 32
4.6.1.1 Multiple Input Signature Register 32
4.6.1.2 Signature generation time 33
4.6.1.3 Signature verification .. 33
4.6.1.4 CRC generator ... 33
4.6.1.5 Critical content ... 34
4.6.1.6 Usage notes ... 35
4.6.2 Test usage ... 36
4.6.2.1 IEC60335_B_FlashTest.h 36
4.6.2.2 IEC60335_B_FlashTest.c 38

4.6.2.3 IEC60335_B_FLASHTestPOST_nnn.asm 43
4.7 Variable Memory (4.2) 46
4.7.1 Test description .. 46
4.7.2 Test usage .. 48
4.7.2.1 IEC60335_B_RAMTest.h 48
4.7.2.2 IEC60335_B_RAMTest.c 49
4.7.2.3 IEC60335_B_ RAMTestPOST_nnn.asm 54
4.8 Secure Data Storage (5.1) 56
4.8.1 Test description .. 56
4.8.2 Usage ... 58
4.8.2.1 IEC60335_B_SecureDataStorage.h 59
4.8.3 IEC60335_B_Config.h 60
4.8.4 LPC1xxx_TargetConfig.h 62
5. Tested peripheral detailed description 62
5.1 CPU, the Cortex-M0 ... 62
5.2 CPU registers and Program counter 63
5.3 Interrupt handling and execution 65
5.4 Clock domains .. 66
5.5 Memory .. 68
5.5.1 ARM Cortex-M0 Memory map 68
5.5.2 NXP Cortex-M0 memory map 69
5.5.3 Invariable memory (flash) 70
5.5.3.1 Multiple Input Signature Register (MISR) 70
5.5.4 Variable memory .. 71
6. Reference list ... 72
7. Legal information .. 73
7.1 Definitions ... 73
7.2 Disclaimers ... 73
7.3 Trademarks .. 73
8. List of figures ... 74
9. List of tables .. 75
10. Contents ... 76

This Manual:http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

http://www.manuallib.com/nxp/an11208-cortex-m0-application-note.html

