
ADSP-21160 SHARC® DSP
Instruction Set Reference

Revision 2.0, November 2003

Part Number
82-001967-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
©2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, SHARC, and the SHARC logo are registered
trademarks of Analog Devices, Inc.

VisualDSP++ is a trademark of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-21160 SHARC DSP Instruction Set Reference iii

Contents

INTRODUCTION

Purpose ... 1-1

Audience .. 1-1

Contents Overview ... 1-2

Development Tools ... 1-3

For Information About Analog Products .. 1-6

For Technical or Customer Support ... 1-7

What’s New in This Manual .. 1-7

Related Documents ... 1-8

Conventions ... 1-8

INSTRUCTION SUMMARY

Chapter Overview ... 2-1

Compute and Move/Modify Summary ... 2-2

Program Flow Control Summary ... 2-4

Immediate Move Summary .. 2-6

Miscellaneous Operations Summary .. 2-7

Register Types Summary ... 2-9

Memory Addressing Summary ... 2-14

iv ADSP-21160 SHARC DSP Instruction Set Reference

Instruction Set Notation Summary .. 2-16

Conditional Execution Codes Summary 2-18

SISD/SIMD Conditional Testing Summary 2-20

Instruction Opcode Acronym Summary 2-22

Universal Register Codes ... 2-26

ADSP-21160 Instruction Opcode Map 2-32

COMPUTE AND MOVE

Group I Instructions ... 3-1

Type 1: Compute, Dreg«···»DM | Dreg«···»PM 3-3

Type 2: Compute .. 3-7

Type 3: Compute, ureg«···»DM | PM, register modify 3-9

Type 4: Compute, dreg«···»DM | PM, data modify 3-14

Type 5: Compute, ureg«···»ureg | Xdreg<->Ydreg 3-19

Type 6: Immediate Shift, dreg«···»DM | PM 3-23

Type 7: Compute, modify ... 3-28

PROGRAM FLOW CONTROL

Group II Instructions ... 4-1

Type 8: Direct Jump | Call .. 4-3

Type 9: Indirect Jump | Call, Compute ... 4-8

Type 10: Indirect Jump | Compute, dreg«···»DM 4-15

Type 11: Return From Subroutine | Interrupt, Compute 4-21

Type 12: Do Until Counter Expired .. 4-26

Type 13: Do Until .. 4-28

ADSP-21160 SHARC DSP Instruction Set Reference v

IMMEDIATE MOVE

Group III Instructions ... 5-1

Type 14: Ureg«···»DM | PM (direct addressing) 5-2

Type 15: Ureg«···»DM | PM (indirect addressing) 5-5

Type 16: Immediate data···»DM | PM ... 5-9

Type 17: Immediate data···»Ureg ... 5-12

MISCELLANEOUS OPERATIONS

Group IV Instructions ... 6-1

Type 18: System Register Bit Manipulation 6-2

Type 19: I Register Modify | Bit-Reverse .. 6-5

Type 20: Push, Pop Stacks, Flush Cache ... 6-8

Type 21: Nop .. 6-10

Type 22: Idle ... 6-11

Type 25: Cjump/Rframe ... 6-12

COMPUTATIONS REFERENCE

Compute Field .. 7-1

ALU Operations ... 7-3

Fixed-Point ALU Operations ... 7-4

ALU Floating-Point Operations ... 7-5

Rn = Rx + Ry .. 7-7

Rn = Rx – Ry .. 7-8

Rn = Rx + Ry + CI .. 7-9

Rn = Rx – Ry + CI – 1 .. 7-10

vi ADSP-21160 SHARC DSP Instruction Set Reference

Rn = (Rx + Ry)/2 .. 7-11

COMP(Rx, Ry) .. 7-12

COMPU(Rx, Ry) ... 7-13

Rn = Rx + CI .. 7-14

Rn = Rx + CI – 1 .. 7-15

Rn = Rx + 1 .. 7-16

Rn = Rx – 1 .. 7-17

Rn = –Rx .. 7-18

Rn = ABS Rx .. 7-19

Rn = PASS Rx .. 7-20

Rn = Rx AND Ry ... 7-21

Rn = Rx OR Ry .. 7-22

Rn = Rx XOR Ry .. 7-23

Rn = NOT Rx .. 7-24

Rn = MIN(Rx, Ry) ... 7-25

Rn = MAX(Rx, Ry) ... 7-26

Rn = CLIP Rx BY Ry .. 7-27

Fn = Fx + Fy ... 7-28

Fn = Fx – Fy ... 7-29

Fn = ABS (Fx + Fy) .. 7-30

Fn = ABS (Fx – Fy) .. 7-31

Fn = (Fx + Fy)/2 ... 7-32

COMP(Fx, Fy) ... 7-33

Fn = –Fx .. 7-34

ADSP-21160 SHARC DSP Instruction Set Reference vii

Fn = ABS Fx ... 7-35

Fn = PASS Fx .. 7-36

Fn = RND Fx ... 7-37

Fn = SCALB Fx BY Ry .. 7-38

Rn = MANT Fx .. 7-39

Rn = LOGB Fx ... 7-40

Rn = FIX Fx
Rn = TRUNC Fx
Rn = FIX Fx BY Ry
Rn = TRUNC Fx BY Ry ... 7-41

Fn = FLOAT Rx BY Ry
Fn = FLOAT Rx ... 7-43

Fn = RECIPS Fx ... 7-44

Fn = RSQRTS Fx .. 7-46

Fn = Fx COPYSIGN Fy .. 7-48

Fn = MIN(Fx, Fy) ... 7-49

Fn = MAX(Fx, Fy) .. 7-50

Fn = CLIP Fx BY Fy ... 7-51

Multiplier Operations ... 7-51

Multiplier Fixed-Point Operations ... 7-53

Multiplier Floating-Point Operations 7-54

Mod1 and Mod2 Modifiers .. 7-54

Rn = Rx * Ry mod2
MRF = Rx * Ry mod2
MRB Rx * Ry mod2 ... 7-56

viii ADSP-21160 SHARC DSP Instruction Set Reference

Rn = MRF + Rx * Ry mod2
Rn = MRB + Rx * Ry mod2
MRF = MRF + Rx * Ry mod2
MRB = MRB + Rx * Ry mod2 ... 7-57

Rn = MRF – Rx * Ry mod2
Rn = MRB – Rx * Ry mod2
MRF = MRF – Rx * Ry mod2
MRB = MRB – Rx * Ry mod2 ... 7-58

Rn = SAT MRF mod1
Rn = SAT MRB mod1
MRF = SAT MRF mod1
MRB = SAT MRB mod1 .. 7-59

Rn = RND MRF mod1
Rn = RND MRB mod1
MRF = RND MRF mod1
MRB = RND MRB mod1 .. 7-60

MRF = 0
MRB = 0 ... 7-61

MRxF/B = Rn/Rn = MRxF/B ... 7-62

Fn = Fx * Fy ... 7-64

Shifter Operations .. 7-64

Shifter Opcodes .. 7-64

Rn = LSHIFT Rx BY Ry
Rn = LSHIFT Rx BY <data8> .. 7-66

Rn = Rn OR LSHIFT Rx BY Ry
Rn = Rn OR LSHIFT Rx BY <data8> 7-67

Rn = ASHIFT Rx BY Ry
Rn = ASHIFT Rx BY <data8> .. 7-68

ADSP-21160 SHARC DSP Instruction Set Reference ix

Rn = Rn OR ASHIFT Rx BY Ry
Rn = Rn OR ASHIFT Rx BY <data8> 7-69

Rn = ROT Rx BY Ry
Rn = ROT Rx BY <data8> .. 7-70

Rn = BCLR Rx BY Ry
Rn = BCLR Rx BY <data8> .. 7-71

Rn = BSET Rx BY Ry
Rn = BSET Rx BY <data8> ... 7-72

Rn = BTGL Rx BY Ry
Rn = BTGL Rx BY <data8> .. 7-73

BTST Rx BY Ry
BTST Rx BY <data8> ... 7-74

Rn = FDEP Rx BY Ry
Rn = FDEP Rx BY <bit6>:<len6> ... 7-75

Rn = Rn OR FDEP Rx BY Ry
Rn = Rn OR FDEP Rx BY <bit6>:<len6> 7-77

Rn = FDEP Rx BY Ry (SE)
Rn = FDEP Rx BY <bit6>:<len6> (SE) 7-79

Rn = Rn OR FDEP Rx BY Ry (SE)
Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE) 7-81

Rn = FEXT Rx BY Ry
Rn = FEXT Rx BY <bit6>:<len6> ... 7-83

Rn = FEXT Rx BY Ry (SE)
Rn = FEXT Rx BY <bit6>:<len6> (SE) 7-85

Rn = EXP Rx .. 7-87

Rn = EXP Rx (EX) .. 7-88

Rn = LEFTZ Rx ... 7-89

Rn = LEFTO Rx ... 7-90

x ADSP-21160 SHARC DSP Instruction Set Reference

Rn = FPACK Fx ... 7-91

Fn = FUNPACK Rx ... 7-92

Multifunction Computations .. 7-93

Operand Constraints ... 7-94

Parallel Add and Subtract .. 7-95

Parallel Multiplier and ALU .. 7-98

Parallel Multiplier With Add and Subtract 7-101

INDEX

ADSP-21160 SHARC DSP Instruction Set Reference 1-1

1 INTRODUCTION

Thank you for purchasing Analog Devices SHARC® digital signal proces-
sor (DSP).

Purpose
The ADSP-21160 SHARC DSP Instruction Set Reference provides
assembly syntax information for the ADSP-21160 Super Harvard Archi-
tecture (SHARC) Digital Signal Processor (DSP). The syntax descriptions
cover instructions that execute within the DSP’s processor core (process-
ing elements, program sequencer, and data address generators). For
architecture and design information on the DSP, see the ADSP-21160
SHARC DSP Hardware Reference.

Audience
DSP system designers and programmers who are familiar with signal pro-
cessing concepts are the primary audience for this manual. This manual
assumes that the audience has a working knowledge of microcomputer
technology and DSP-related mathematics.

DSP system designers and programmers who are unfamiliar with signal
processing can use this manual, but should supplement this manual with
other texts, describing DSP techniques.

Contents Overview

1-2 ADSP-21160 SHARC DSP Instruction Set Reference

All readers, particularly programmers, should refer to the DSP’s develop-
ment tools documentation software development information. For
additional suggested reading, see “For Information About Analog Prod-
ucts” on page 1-6.

Contents Overview
This reference presents instruction information organized by the type of
the instruction. Instruction types relate to the machine language opcode
for the instruction. On this DSP, the opcodes categorize the instructions
by the portions of the DSP architecture that execute the instructions. The
following chapters cover the different types of instructions.

• “Instruction Summary” on page 2-1 – This chapter provides a syn-
tax summary of all instructions and describes the conventions that
are used on the instruction reference pages.

• “Compute and Move” on page 3-1 – These instruction specify a
compute operation in parallel with one or two data moves or an
index register modify.

• “Program Flow Control” on page 4-1 – These instructions specify
various types of branches, calls, returns, and loops. Some may also
specify a compute operation and/or a data move.

• “Immediate Move” on page 5-1 – These instructions use immedi-
ate instruction fields as operators for addressing.

ADSP-21160 SHARC DSP Instruction Set Reference 1-3

Introduction

• “Miscellaneous Operations” on page 6-1 – These instructions
include bit modify, bit test, no operation, idle, and cache
manipulation.

• “Computations Reference” on page 7-1 – This chapter describes
computation and multifunction computation operations that are
available within many instructions’ opcodes through a COMPUTE
field that specifies a compute operation using the ALU, multiplier,
or shifter.

Each of the DSP’s instructions is specified in this text. The reference page
for an instruction shows the syntax of the instruction, describes its func-
tion, gives one or two assembly-language examples, and identifies fields of
its opcode. The instructions are referred to by type, ranging from 1 to 25.
These types correspond to the opcodes that ADSP-21160 DSPs recognize,
but are for reference only and have no bearing on programming.

Some instructions have more than one syntactical form; for example,
instruction “Type 4: Compute, dreg«···»DM | PM, data modify” on
page 3-14 has four distinct forms.

Many instructions can be conditional. These instructions are prefaced by
IF COND; for example:

If COND compute, |DM(Ia,Mb)| = ureg;

In a conditional instruction, the execution of the entire instruction is
based on the specified condition.

Development Tools
The ADSP-21160 is supported by VisualDSP++TM, an easy-to-use project
management environment, comprised of an Integrated Development
Environment (IDE) and Debugger. VisualDSP++ lets you manage

Development Tools

1-4 ADSP-21160 SHARC DSP Instruction Set Reference

projects from start to finish from within a single, integrated interface.
Because the project development and debug environments are integrated,
you can move easily between editing, building, and debugging activities.

Flexible Project Management. The IDE provides flexible project manage-
ment for the development of DSP applications. The IDE includes access
to all the activities necessary to create and debug DSP projects. You can
create or modify source files or view listing or map files with the IDE Edi-
tor. This powerful Editor is part of the IDE and includes multiple
language syntax highlighting, OLE drag and drop, bookmarks, and stan-
dard editing operations such as undo/redo, find/replace, copy/paste/cut,
and go to.

Also, the IDE includes access to the SHARC DSP C Compiler, C
Run-time Library, Assembler, Linker, Loader, Simulator, and Splitter.
You specify options for these SHARC DSP Tools through Property Page
dialogs. Property Page dialogs are easy to use, and make configuring,
changing, and managing your projects simple. These options control how
the tools process inputs and generate outputs, and have a one-to-one cor-
respondence to the tools’ command line switches. You can define these
options once, or modify them to meet changing development needs. You
can also access the SHARC DSP Tools from the operating system com-
mand line if you choose.

Greatly Reduced Debugging Time. The Debugger has an easy-to-use,
common interface for all processor simulators and emulators available
through Analog Devices and third parties or custom developments. The
Debugger has many features that greatly reduce debugging time. You can
view C source interspersed with the resulting Assembly code. You can pro-
file execution of a range of instructions in a program; set simulated watch
points on hardware and software registers, program and data memory; and
trace instruction execution and memory accesses. These features enable
you to correct coding errors, identify bottlenecks, and examine DSP per-
formance. You can use the custom register option to select any

ADSP-21160 SHARC DSP Instruction Set Reference 1-5

Introduction

combination of registers to view in a single window. The Debugger can
also generate inputs, outputs, and interrupts so you can simulate real
world application conditions.

SHARC DSP Software Development Tools. SHARC DSP Software
Development Tools, which support the SHARC DSP Family, allow you
to develop applications that take full advantage of the SHARC DSP archi-
tecture, including multiprocessing, shared memory, and memory overlays.
SHARC DSP Software Development Tools include C Compiler, C Runt-
ime Library, DSP and Math Libraries, Assembler, Linker, Loader,
Simulator, and Splitter.

C Compiler & Assembler. The C Compiler generates efficient code that
is optimized for both code density and execution time. The C Compiler
allows you to include Assembly language statements inline. Because of
this, you can program in C and still use Assembly for time-critical loops.
You can also use pretested Math, DSP, and C Runtime Library routines to
help shorten your time to market. The SHARC DSP Family Assembly
language is based on an algebraic syntax that is easy to learn, program, and
debug. The add instruction, for example, is written in the same manner as
the actual equation (for example, Rx = Ra + Rb;).

Linker & Loader. The Linker provides flexible system definition through
Linker Description Files (.LDF). In a single LDF, you can define different
types of executables for a single or multiprocessor system. The Linker
resolves symbols over multiple executables, maximizes memory use, and
easily shares common code among multiple processors. The Loader sup-
ports creation of host, link port, and PROM boot images. Along with the
Linker, the Loader allows multiprocessor system configuration with
smaller code and faster boot time.

Simulator. The Simulator is a cycle-accurate, instruction-level simulator
that allows you to simulate your application in real time.

For Information About Analog Products

1-6 ADSP-21160 SHARC DSP Instruction Set Reference

Third-Party Extensible. The VisualDSP++ environment enables
third-party companies to add value by using a published set of Application
Programming Interfaces (API) provided by Analog Devices. Third-party
products—runtime operating systems, emulators, high-level language
compilers, multiprocessor hardware—can interface seamlessly with
VisualDSP++ thereby simplifying the tools integration task.

VisualDSP++ follows the COM API format. Two API tools, Target Wiz-
ard and API Tester, are also available for use with the API set. These tools
help speed the time-to-market for vendor products. Target Wizard builds
the programming shell based on API features the vendor requires. The
API tester exercises the individual features independently of VisualDSP++.
Third parties can use a subset of these APIs that meets their application
needs. The interfaces are fully supported and backward compatible.

Further details and ordering information are available in the VisualDSP++
Development Tools data sheet. This data sheet can be requested from any
Analog Devices sales office or distributor.

For Information About Analog Products
Analog Devices is online on the internet at http://www.analog.com. Our
Web pages provide information on the company and products, including
access to technical information and documentation, product overviews,
and product announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Visit our World Wide Web site at www.analog.com

• FAX questions or requests for information to 1(781)461-3010.

• Access the Computer Products Division File Transfer Protocol
(FTP) site at ftp ftp.analog.com or ftp 137.71.23.21 or
ftp://ftp.analog.com.

ADSP-21160 SHARC DSP Instruction Set Reference 1-7

Introduction

For Technical or Customer Support
You can reach our Customer Support group in the following ways.

• E-mail questions to dsp.support@analog.com or
dsp.europe@analog.com (European customer support)

• Telex questions to 924491, TWX:710/394-6577

• Cable questions to ANALOG NORWOODMASS

• Contact your local ADI sales office or an authorized ADI
distributor

• Send questions by mail to:

Analog Devices, Inc.

DSP Division

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

What’s New in This Manual
This is the second edition of the ADSP-21160 SHARC DSP Instruction Set
Reference. This edition was updated to correct all open document errata.

Related Documents

1-8 ADSP-21160 SHARC DSP Instruction Set Reference

Related Documents
For more information about Analog Devices DSPs and development
products, see the following documents.

• ADSP-21160 SHARC DSP Microcomputer Data Sheet

• ADSP-21160 SHARC DSP Hardware Reference

• Getting Started Guide for SHARC DSPs

• User's Guide for SHARC DSPs

• C/C++ Compiler and Library Manual for SHARC DSPs

• Assembler and Preprocessor Manual for SHARC DSPs

• Linker and Utilities Manual for SHARC DSPs

All the manuals are included in the software distribution CD-ROM. To
access these manuals in the VisualDSP++ environment, select Contents
from the Help menu. Then select Manuals and open any of the manuals,
which are in Adobe Acrobat PDF format.

Conventions
The following conventions apply to all chapters. Note that additional con-
ventions, which apply only to specific chapters, appear throughout this
document.

Table 1-1. Notation Conventions

Example Description

PC, R1, PX Register names appear in UPPERCASE and keyword font

TIMEXP, RESET Pin names appear in UPPERCASE and keyword font; active low sig-
nals appear with an OVERBAR.

ADSP-21160 SHARC DSP Instruction Set Reference 1-9

Introduction

If, Do/Until Assembler instructions (mnemonics) appear in initial capitals

Click Here In the online version of this document, a cross reference acts as a hyper-
text link to the item being referenced. Click on blue references
(Table, Figure, or section names) to jump to the location.

Table 1-1. Notation Conventions

Example Description

Conventions

1-10 ADSP-21160 SHARC DSP Instruction Set Reference

ADSP-21160 SHARC DSP Instruction Set Reference 2-1

2 INSTRUCTION SUMMARY

This instruction set summary provides a syntax summary for each instruc-
tion and includes a cross reference to each instruction’s reference page.

Chapter Overview
The following summary topics appear in this chapter.

• “Compute and Move/Modify Summary” on page 2-2

• “Program Flow Control Summary” on page 2-4

• “Immediate Move Summary” on page 2-6

• “Miscellaneous Operations Summary” on page 2-7

• “Register Types Summary” on page 2-9

• “Memory Addressing Summary” on page 2-14

• “Instruction Set Notation Summary” on page 2-16

• “Conditional Execution Codes Summary” on page 2-18

• “SISD/SIMD Conditional Testing Summary” on page 2-20

• “Instruction Opcode Acronym Summary” on page 2-22

• “Universal Register Codes” on page 2-26

• “ADSP-21160 Instruction Opcode Map” on page 2-32

Compute and Move/Modify Summary

2-2 ADSP-21160 SHARC DSP Instruction Set Reference

Compute and Move/Modify Summary
Compute and move/modify instructions are classed as Group I instruc-
tions, and they provide math, conditional, memory/register access
services. The series of tables that follow summarize the Group I instruc-
tions. For a complete description of these instructions, see the noted
pages.

“Type 1: Compute, Dreg«···»DM | Dreg«···»PM” on page 3-3

“Type 2: Compute” on page 3-7

“Type 3: Compute, ureg«···»DM | PM, register modify” on page 3-9

compute , DM(Ia, Mb) = dreg1 , PM(Ic, Md) = dreg2 ;

, dreg1 = DM(Ia, Mb) , dreg2 = PM(Ic, Md)

IF COND compute ;

IF COND compute , DM(Ia, Mb) = ureg (LW);

, PM(Ic, Md)

, DM(Mb, Ia) = ureg (LW);

, PM(Md, Ic)

, ureg = DM(Ia, Mb) (LW);

PM(Ic, Md) (LW);

, ureg = DM(Mb, Ia) (LW);

PM(Md, Ic) (LW);

ADSP-21160 SHARC DSP Instruction Set Reference 2-3

Instruction Summary

“Type 4: Compute, dreg«···»DM | PM, data modify” on page 3-14

“Type 5: Compute, ureg«···»ureg | Xdreg<->Ydreg” on page 3-19

“Type 6: Immediate Shift, dreg«···»DM | PM” on page 3-23

“Type 7: Compute, modify” on page 3-28

IF COND compute , DM(Ia, <data6>) = dreg ;

, PM(Ic, <data6>)

, DM(<data6>, Ia) = dreg ;

, PM(<data6>, Ic)

, dreg = DM(Ia, <data6>) ;

PM(Ic, <data6>) ;

, dreg = DM(<data6>, Ia) ;

PM(<data6>, Ic) ;

IF COND compute, ureg1 = ureg2 ;

X dreg <-> Y dreg

IF COND shiftimm , DM(Ia, Mb) = dreg ;

, PM(Ic, Md)

, dreg = DM(Ia, Mb) ;

PM(Ic, Md) ;

Program Flow Control Summary

2-4 ADSP-21160 SHARC DSP Instruction Set Reference

Program Flow Control Summary
Program flow control instructions are classed as Group II instructions,
and they let you control program execution flow. The series of tables that
follow summarize the Group II instructions. For a complete description of
these instructions, see the noted pages.

“Type 8: Direct Jump | Call” on page 4-3

IF COND compute , MODIFY (Ia, Mb) ;

(Ic, Md) ;

IF COND JUMP <addr24> (DB) ;

(PC, <reladdr24>) (LA)

(CI)

(DB, LA)

(DB, CI)

IF COND CALL <addr24> (DB) ;

(PC, <reladdr24>)

ADSP-21160 SHARC DSP Instruction Set Reference 2-5

Instruction Summary

“Type 9: Indirect Jump | Call, Compute” on page 4-8

“Type 10: Indirect Jump | Compute, dreg«···»DM” on page 4-15

“Type 11: Return From Subroutine | Interrupt, Compute” on page 4-21

IF COND JUMP (Md, Ic) (DB) , compute ;

(PC, <reladdr6>) (LA) , ELSE compute

(CI)

(DB, LA)

(DB, CI)

IF COND CALL (Md, Ic) (DB) , compute ;

(PC, <reladdr6>) , ELSE compute

IF COND Jump (Md, Ic) ,Else compute, DM(Ia, Mb) = dreg ;

(PC, <reladdr6>) compute, dreg = DM(Ia, Mb) ;

IF COND RTS (DB) , compute ;

(LR) , ELSE compute

(DB, LR)

IF COND RTI (DB) , compute ;

, ELSE compute

Immediate Move Summary

2-6 ADSP-21160 SHARC DSP Instruction Set Reference

“Type 12: Do Until Counter Expired” on page 4-26

“Type 13: Do Until” on page 4-28

Immediate Move Summary
Immediate move instructions are classed as Group III instructions, and
they provide memory/register access services. The series of tables that fol-
low summarize the Group III instructions. For a complete description of
these instructions, see the noted pages.

“Type 14: Ureg«···»DM | PM (direct addressing)” on page 5-2

“Type 15: Ureg«···»DM | PM (indirect addressing)” on page 5-5

LCNTR = <data16> , DO <addr24> UNTIL LCE;

ureg (PC, <reladdr24>)

DO <addr24> UNTIL termination ;

(PC, <reladdr24>)

DM(<addr32>)
PM(<addr32>)

= ureg (LW);

ureg = DM(<addr32>) (LW);

PM(<addr32>) (LW);

DM(<data32>, Ia)
PM(<data32>, Ic)

= ureg (LW);

ADSP-21160 SHARC DSP Instruction Set Reference 2-7

Instruction Summary

“Type 16: Immediate data···»DM | PM” on page 5-9

“Type 17: Immediate data···»Ureg” on page 5-12

Miscellaneous Operations Summary
Miscellaneous instructions are classed as Group IV instructions, and they
provide system register, bit manipulation, and low power services. The
series of tables that follow summarize the Group IV instructions. For a
complete description of these instructions, see the noted pages.

“Type 18: System Register Bit Manipulation” on page 6-2

ureg = DM(<data32>, Ia) (LW);

PM(<data32>, Ic)

DM(Ia, Mb)
PM(Ic, Md)

= <data32> ;

ureg = <data32> ;

BIT SET sreg <data32> ;

CLR

TGL

TST

XOR

Miscellaneous Operations Summary

2-8 ADSP-21160 SHARC DSP Instruction Set Reference

“Type 19: I Register Modify | Bit-Reverse” on page 6-5

“Type 20: Push, Pop Stacks, Flush Cache” on page 6-8

“Type 21: Nop” on page 6-10

“Type 22: Idle” on page 6-11

“Type 25: Cjump/Rframe” on page 6-12

MODIFY (Ia, <data32>) ;

(Ic, <data32>)

BITREV (Ia, <data32>) ;

(Ic, <data32>)

PUSH LOOP , PUSH STS , PUSH PCSTK , FLUSH CACHE ;

POP POP POP

NOP ;

IDLE ;

CJUMP function (DB) ;

(PC, <reladdr24>)

RFRAME ;

ADSP-21160 SHARC DSP Instruction Set Reference 2-9

Instruction Summary

Register Types Summary
Table 2-1 and Table 2-2 list ADSP-21160 DSP registers. The registers in
Table 2-1 are in the core processor portion of the DSP. The registers in
Table 2-2 are in the integrated I/O processor and external port sections of
the DSP.

Table 2-1. Universal Registers (Ureg)

Register Type Register(s) Function

Register File
(ureg & dreg)

R0, R1, R2, R3, R4, R5, R6, R7, R8,
R9, R10, R11, R12, R13, R14, R15

Processing element X register file
locations, fixed-point

F0, F1, F2, F3, F4, F5, F6, F7, F8,
F9, F10, F11, F12, F13, F14, F15

Processing element X register file
locations, floating-point

S0, S1, S2, S3, S4, S5, S6, S7, S8, S9,
S10, S11, S12, S13, S14, S15

Processing element Y register file
locations, fixed-point

SF0, SF1, SF2, SF3, SF4, SF5, SF6,
SF7, SF8, SF9, SF10, SF11, SF12,
SF13, SF14, SF15

Processing element Y register file
locations, floating-point

Program Sequencer PC Program counter (read-only)

PCSTK Top of PC stack

PCSTKP PC stack pointer

FADDR Fetch address (read-only)

DADDR Decode address (read-only)

LADDR Loop termination address, code; top
of loop address stack

CURLCNTR Current loop counter; top of loop
count stack

LCNTR Loop count for next nested
counter-controlled loop

Register Types Summary

2-10 ADSP-21160 SHARC DSP Instruction Set Reference

Data Address
Generators

I0, I1, I2, I3, I4, I5, I6, I7 DAG1 index registers

M0, M1, M2, M3, M4, M5, M6, M7 DAG1 modify registers

L0, L1, L2, L3, L4, L5, L6, L7 DAG1 length registers

B0, B1, B2, B3, B4, B5, B6, B7 DAG1 base registers

I8, I9, I10, I11, I12, I13, I14, I15 DAG2 index registers

M8, M9, M10, M11, M12, M13,
M14, M15

DAG2 modify registers

L8, L9, L10, L11, L12, L13, L14,
L15

DAG2 length registers

B8, B9, B10, B11, B12, B13, B14,
B15

DAG2 base registers

Bus Exchange PX1 PMD-DMD bus exchange 1 (32 bits)

PX2 PMD-DMD bus exchange 2 (32 bits)

PX 64-bit combination of PX1 and PX2

Timer TPERIOD Timer period

TCOUNT Timer counter

Table 2-1. Universal Registers (Ureg) (Cont’d)

Register Type Register(s) Function

ADSP-21160 SHARC DSP Instruction Set Reference 2-11

Instruction Summary

System Registers
(sreg & ureg)

MODE1 Mode control & status

MODE2 Mode control & status

IRPTL Interrupt latch

IMASK Interrupt mask

IMASKP Interrupt mask pointer (for nesting)

MMASK Mode mask

FLAGS Flag pins input/output state

LIRPTL Link Port interrupt latch, mask, and
pointer

ASTATx Element x arithmetic status flags, bit
test flag, etc.

ASTATy Element y arithmetic status flags, bit
test flag, etc.

STKYx Element x sticky arithmetic status
flags, stack status flags, etc.

STKYy Element y sticky arithmetic status
flags, stack status flags, etc.

USTAT1 User status register 1

USTAT2 User status register 2

USTAT3 User status register 3

USTAT4 User status register 4

Table 2-1. Universal Registers (Ureg) (Cont’d)

Register Type Register(s) Function

Register Types Summary

2-12 ADSP-21160 SHARC DSP Instruction Set Reference

Table 2-2. I/O and Multiplier Registers

Register Type Register(s) Function

IOP registers
(system control)

SYSCON System control

SYSTAT System status

WAIT Memory wait states

VIRPT Multiprocessor IRQ

IOP registers
(system control)

MSGR0, MSGR1, MSGR2,
MSGR3, MSGR4, MSGR5,
MSGR6, MSGR7

Message registers

BMAX Bus timeout max

BCNT Bus timeout count

ELAST External address last

IOP registers
(DMA)

EPB0, EPB1, EPB2, EPB3 External port FIFO buffers

DMAC10, DMAC11, DMAC12,
DMAC13

DMA controls (EPB0-3)

DMASTAT DMA status

II0, IM0, C0, CP0, GP0, DB0, DA0 DMA 0 parameters (SPORT0 RX)

II1, IM1, C1, CP1, GP1, DB1, DA1 DMA 1 parameters (SPORT1 RX)

II2, IM2, C2, CP2, GP2, DB2, DA2 DMA 2 parameters (SPORT0 TX)

II3, IM3, C3, CP3, GP3, DB3, DA3 DMA 3 parameters (SPORT1 TX)

ADSP-21160 SHARC DSP Instruction Set Reference 2-13

Instruction Summary

IOP registers
(DMA)

II4, IM4, C4, CP4, GP4, DB4, DA4 DMA 4 parameters (LBUF0)

II5, IM5, C5, CP5, GP5, DB5, DA5 DMA 5 parameters (LBUF1)

II6, IM6, C6, CP6, GP6, DB6, DA6 DMA 6 parameters (LBUF2)

II7, IM7, C7, CP7, GP7, DB7, DA7 DMA 7 parameters (LBUF3)

II8, IM8, C8, CP8, GP8, DB8, DA8 DMA 8 parameters (LBUF4)

II9, IM9, C9, CP9, GP9, DB9, DA9 DMA 9 parameters (LBUF5)

II10, IM10, C10, CP10, GP10,
EI10, EM10, EC10

DMA 10 parameters (EPB0)

II11, IM11, C11, CP11, GP11,
EI11, EM11, EC11

DMA 11 parameters (EPB1)

II12, IM12, C12, CP12, GP12,
EI12, EM12, EC12

DMA 12 parameters (EPB2)

II13, IM13, C13, CP13, GP13,
EI13, EM13, EC13

DMA 7 parameters (EPB3)

IOP registers
(Link ports)

LBUF0, LBUF1, LBUF2, LBUF3,
LBUF4, LBUF5

Link port buffers

LCTL0, LCTL1 Link buffer control

LCOM Link common control

LAR Link assignment

LSRQ Link service request

LPATH1, LPATH2, LPATH3 Link path (mesh)

LPCNT Link path count (mesh)

CNST1, CNST2 Link constant (mesh)

Table 2-2. I/O and Multiplier Registers (Cont’d)

Register Type Register(s) Function

Memory Addressing Summary

2-14 ADSP-21160 SHARC DSP Instruction Set Reference

Memory Addressing Summary
ADSP-21160 DSPs support the following types of addressing.

Direct Addressing

Absolute address (Instruction Types 8, 12, 13, 14)

dm(0x000015F0) = astat;

if ne jump label2; {'label2' is an address label}

PC-relative address (Instruction Types 8, 9, 10, 12, 13)

call(pc,10), r0=r6+r3;

do(pc,length) until sz; {'length' is a variable}

IOP registers
(SPORTs)

STCTL0, SRCTL0, TX0, RX0,
TDIV0, RDIV0, MTCS0, MRCS0,
MTCCS0, MRCCS0, SPATH0,
KEYWD0, KEYMASK0

SPORT 0 registers

STCTL1, SRCTL1, TX1, RX1,
TDIV1, RDIV1, MTCS, MRCS1,
MTCCS1, MRCCS1, SPATH1,
KEYWD1, KEYMASK1

SPORT 1 registers

Multiplier registers MR, MR0, MR1, MR2, Multiplier results

MRF, MR0F, MR1F, MR2F Multiplier results,
foreground

MRB, MR0B, MR1B, MR2B Multiplier results, background

Table 2-2. I/O and Multiplier Registers (Cont’d)

Register Type Register(s) Function

ADSP-21160 SHARC DSP Instruction Set Reference 2-15

Instruction Summary

Indirect Addressing (using DAG registers):

Post-modify with M register, update I register (Instruction Types
1, 3, 6, 16)

f5=pm(i9,m12);

dm(i0,m3)=r3, r1=pm(i15,m10);

Pre-modify with M register, no update (Instruction Types 3, 9,
10)

r1=pm(m10,i15);

jump(m13,i11);

Post-modify with immediate value, update I register (Instruction
Type 4)

f15=dm(i0,6);

if av r1=pm(i15,0x11);

Pre-modify with immediate value, no update (Instruction Types
4, 15)

if av r1=pm(0x11,i15);

dm(127,i5)=laddr;

Instruction Set Notation Summary

2-16 ADSP-21160 SHARC DSP Instruction Set Reference

Instruction Set Notation Summary
The conventions for ADSP-210xx instruction syntax descriptions appear
in Table 2-3 on page 2-16. Other parts of the instruction syntax and
opcode information also appear in this section.

Table 2-3. Instruction Set Notation

Notation Meaning

UPPERCASE Explicit syntax—assembler keyword (notation only; assembler is
case-insensitive and lowercase is the preferred programming convention)

; Semicolon (instruction terminator)

, Comma (separates parallel operations in an instruction)

italics Optional part of instruction

| option1 |
| option2 |

List of options between vertical bars (choose one)

compute ALU, multiplier, shifter or multifunction operation (see the chapter
“Computations Reference”).

shiftimm Shifter immediate operation (see the chapter “Computations Refer-
ence”).

cond Status condition (see condition codes in Table 2-4 on page 2-18)

termination Loop termination condition (see condition codes in Table 2-4 on
page 2-18)

ureg Universal register

cureg Complementary universal register (see Table 2-10 on page 2-28)

sreg System register

csreg Complementary system register (see Table 2-10 on page 2-28)

dreg Data register (register file): R15-R0 or F15-F0

cdreg Complementary data register (register file): R15-R0 or F15-F0 (see
Table 2-10 on page 2-28)

creg One of 32 cache entries, an entry consisting of a CH, CL, & CA

ADSP-21160 SHARC DSP Instruction Set Reference 2-17

Instruction Summary

Ia I7-I0 (DAG1 index register)

Mb M7-M0 (DAG1 modify register)

Ic I15-I8 (DAG2 index register)

Md M15-M8 (DAG2 modify register)

<datan> n-bit immediate data value

<addrn> n-bit immediate address value

<reladdrn> n-bit immediate PC-relative address value

+1 the incremented data, address or register value

(DB) Delayed branch

(LA) Loop abort (pop loop and PC stacks on branch)

(CI) Clear interrupt

(LR) Loop reentry

(LW) Long Word (forces Long word access in Normal word range)

Table 2-3. Instruction Set Notation (Cont’d)

Notation Meaning

Conditional Execution Codes Summary

2-18 ADSP-21160 SHARC DSP Instruction Set Reference

Conditional Execution Codes Summary
In a conditional instruction, execution of the entire instruction depends
on the specified condition (cond or terminate). Table 2-4 lists the codes
that you can use in conditionals (IF and DO UNTIL).

Table 2-4. IF Condition and Do/Until Termination Mnemonics

Condition From Description True if… Mnemonic

ALU ALU = 0 AZ = 1 EQ

ALU ≠ 0 AZ = 0 NE

ALU > 0 footnote1 GT

ALU < zero footnote2 LT

ALU ≥ 0 footnote3 GE

ALU ≤ 0 footnote4 LE

ALU carry AC = 1 AC

ALU not carry AC = 0 NOT AC

ALU overflow AV = 1 AV

ALU not overflow AV = 0 NOT AV

Multiplier Multiplier overflow MV = 1 MV

Multiplier not overflow MV= 0 NOT MV

Multiplier sign MN = 1 MS

Multiplier not sign MN = 0 NOT MS

Shifter Shifter overflow SV = 1 SV

Shifter not overflow SV = 0 NOT SV

Shifter zero SZ = 1 SZ

Shifter not zero SZ = 0 NOT SZ

ADSP-21160 SHARC DSP Instruction Set Reference 2-19

Instruction Summary

Bit Test Bit test flag true BTF = 1 TF

Bit test flag false BTF = 0 NOT TF

Flag Input Flag0 asserted FI0 = 1 FLAG0_IN

Flag0 not asserted FI0 = 0 NOT FLAG0_IN

Flag1 asserted FI1 = 1 FLAG1_IN

Flag1 not asserted FI1 = 0 NOT FLAG1_IN

Flag2 asserted FI2 = 1 FLAG2_IN

Flag2 not asserted FI2 = 0 NOT FLAG2_IN

Flag3 asserted FI3 = 1 FLAG3_IN

Flag3 not asserted FI3 = 0 NOT FLAG3_IN

Mode Bus master true BM

Bus master false NOT BM

Sequencer Loop counter expired (Do) CURLCNTR = 1 LCE

Loop counter not expired
(If)

CURLCNTR ≠ 1 NOT ICE

Always false (Do) Always FOREVER

Always true (If) Always TRUE

1 ALU greater than (GT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 0
2 ALU less than (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 1
3 ALU greater equal (GE) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 0
4 ALU lesser or equal (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 1

Table 2-4. IF Condition and Do/Until Termination Mnemonics

Condition From Description True if… Mnemonic

SISD/SIMD Conditional Testing Summary

2-20 ADSP-21160 SHARC DSP Instruction Set Reference

SISD/SIMD Conditional Testing Summary
The DSP handles conditional execution differently in SISD versus SIMD
mode. There are three ways that conditionals differ in SIMD mode:

• In conditional computation (If ... Compute) instructions, each
processing element executes the computation based on evaluating
the condition in that processing element.

• In conditional program control (If ... Jump/Call) instructions, the
program sequencer executes the Jump/Call based on a logical AND
of the conditions in both processing elements.

• In conditional computation instructions with an Else clause, each
processing element executes the Else computation based on evalu-
ating the inverse of the condition (Not Cond) in that processing
element.

Table 2-5 on page 2-20 and Table 2-6 on page 2-21 compare SISD and
SIMD If-Else conditional execution, which are available in the Type 9,
10, and 11 instructions.

Table 2-5. SISD Mode Conditional Execution

Conditional test ELSE modifier Results for Type 11 (RTS)

0 (false) 0 (without else) rts nops, compute nops

0 (false) 1 (else) rts nops, compute executes

1 (true) 0 (without else) rts executes, compute executes

1 (true) 1 (else) rts executes, compute nops

ADSP-21160 SHARC DSP Instruction Set Reference 2-21

Instruction Summary

For more information and examples, see the following instruction refer-
ence pages.

• “Type 9: Indirect Jump | Call, Compute” on page 4-8

• “Type 10: Indirect Jump | Compute, dreg«···»DM” on page 4-15

• “Type 11: Return From Subroutine | Interrupt, Compute” on
page 4-21

Table 2-6. SIMD Mode Conditional Execution

Conditional test Else modifier Results for Type 11 (RTS)

PEx PEy

0 0 0 rts nops, pex compute nops, pey compute nops

0 1 0 rts nops, pex compute nops, pey compute executes

1 0 0 rts nops, pex compute exe., pey compute nops

1 1 0 rts exe., pex compute exe., pey compute exe.

0 0 1 rts nops, pex compute exe., pey compute exe.

0 1 1 rts nops, pex compute exe., pey compute nops

1 0 1 rts nops, pex compute nops, pey compute exe.

1 1 1 rts exe., pex compute nops, pey compute nops

Instruction Opcode Acronym Summary

2-22 ADSP-21160 SHARC DSP Instruction Set Reference

Instruction Opcode Acronym Summary
In ADSP-21160 DSP opcodes, some bits are explicitly defined to be zeros
or ones. The values of other bits or fields set various parameters for the
instruction. The terms in Table 2-7 define these opcode bits and fields.
Unspecified bits are ignored when the processor decodes the instruction,
but are reserved for future use.

Table 2-7. Opcode Acronyms

Bit/Field Description States

A Loop abort code 0

1

Do not pop loop, PC stacks on
branch

Pop loop, PC stacks on branch

ADDR Immediate address field

AI Computation unit register 0000

0001

0010

0100

0101

0110

MR0F

MR1F

MR2F

MR0B

MR1B

MR2B

B Branch type 0

1

Jump

Call

ADSP-21160 SHARC DSP Instruction Set Reference 2-23

Instruction Summary

BOP Bit Operation select codes 000

001

010

100

101

Set

Clear

Toggle

Test

XOR

COMPUTE Compute operation field (see “Com-
putations Reference” on page 7-1)

COND Status Condition codes 0–31

CI Clear interrupt code 0

1

Do not clear current interrupt

Clear current interrupt

CREG Instruction cache entry 0–31

CS Instruction cache register select code 00

01

11

Lower half of instruction RAM
entry

Upper half of instruction RAM
entry

Address CAM entry

CU Computation unit select codes 00

01

10

ALU

Multiplier

Shifter

DATA Immediate data field

DEC Counter decrement code 0

1

No counter decrement

Counter decrement

Table 2-7. Opcode Acronyms (Cont’d)

Bit/Field Description States

Instruction Opcode Acronym Summary

2-24 ADSP-21160 SHARC DSP Instruction Set Reference

DMD Memory access direction 0

1

Read

Write

DMI Index (I) register numbers, DAG1 0–7

DMM Modify (M) register numbers, DAG1 0–7

DREG Register file locations 0–15

E ELSE clause code 0

1

No ELSE clause

ELSE clause

FC Flush cache code 0

1

No cache flush

Cache flush

G DAG/Memory select 0

1

DAG1 or Data Memory

DAG2 or Program Memory

INC Counter increment code 0

1

No counter increment

Counter increment

J Jump Type 0

1

Non-delayed

Delayed

L Long Word memory address 0

1

Access size based on memory
map

Long word (64-bit) access size

LPO Loop stack pop code 0

1

No stack pop

Stack pop

LPU Loop stack push code 0

1

No stack push

Stack push

Table 2-7. Opcode Acronyms (Cont’d)

Bit/Field Description States

ADSP-21160 SHARC DSP Instruction Set Reference 2-25

Instruction Summary

LR Loop reentry code 0

1

No loop reentry

Loop reentry

NUM Interrupt vector 0–7

PMD Memory access direction 0

1

Read

Write

PMI Index (I) register numbers, DAG2 8–15

PMM Modify (M) register numbers, DAG2 8–15

PPO PC stack pop code 0

1

No stack pop

Stack pop

PPU PC stack push code 0

1

No stack push

Stack push

RELADDR PC-relative address field

S UREG transfer/instruction cache
read-load select

0

1

instruction cache read-load

ureg transfer

SPO Status stack pop code 0

1

No stack pop

Stack pop

SPU Status stack push code 0

1

No stack push

Stack push

SREG System Register code 0–15 (see “Universal Register Codes” on
page 2-26)

TERM Termination Condition codes 0–31

U Update, index (I) register 0

1

Pre-modify, no update

Post-modify with update

Table 2-7. Opcode Acronyms (Cont’d)

Bit/Field Description States

Universal Register Codes

2-26 ADSP-21160 SHARC DSP Instruction Set Reference

Universal Register Codes
Table 2-8, Table 2-9 on page 2-27, Table 2-10 on page 2-28, and
Table 2-11 on page 2-30 in this section list the bit codes for register that
appear within opcode fields.

UREG Universal Register code 0–256 (see “Universal Register Codes” on
page 2-26)

RA, RM, RN,
RS, RX, RY

Register file locations for compute
operands and results

0–15

RXA ALU x-operand register file location
for multifunction operations

8–11

RXM Multiplier x-operand register file
location for multifunction operations

0–3

RYA ALU y-operand register file location
for multifunction operations

12–15

RYM Multiplier y-operand register file
location for multifunction operations

4–7

Table 2-8. Universal Registers

Register Description

PC program counter

PCSTK top of PC stack

PCSTKP PC stack pointer

FADDR fetch address

DADDR decode address

LADDR loop termination address

CURLCNTR current loop counter

Table 2-7. Opcode Acronyms (Cont’d)

Bit/Field Description States

ADSP-21160 SHARC DSP Instruction Set Reference 2-27

Instruction Summary

LCNTR loop counter

R15–R0 X element register file locations

S15–S0 Y element register file locations

I15–I0 DAG1 and DAG2 index registers

M15–M0 DAG1 and DAG2 modify registers

L15–L0 DAG1 and DAG2 length registers

B15–B0 DAG1 and DAG2 base registers

PX 48-bit PX1 and PX2 combination

PX1 bus exchange 1 (16 bits)

PX2 bus exchange 2 (32 bits)

TPERIOD timer period

TCOUNT timer counter

Table 2-9. Universal and System Registers

Register Description

MODE1 mode control 1

MODE2 mode control 2

IRPTL interrupt latch

IMASK interrupt mask

IMASKP interrupt mask pointer

MMASK Mode mask

FLAGS Flag pins input/output state

ASTATx X element arithmetic status

Table 2-8. Universal Registers (Cont’d)

Register Description

Universal Register Codes

2-28 ADSP-21160 SHARC DSP Instruction Set Reference

STKYx X element sticky status

ASTATy Y element arithmetic status

STKYy Y element sticky status

USTAT1 user status reg 1

USTAT2 user status reg 2

USTAT3 user status reg 3

USTAT4 user status reg 4

Table 2-10. Complementary Registers (Ureg–Cureg)

Register Type SIMD Mode Complementary Registers

Data register (dreg & ureg) R0–S0
R1–S1
R2–S2
R3–S3
R4–S4
R5–S5
R6–S6
R7–S7
R8–S8
R9–S9
R10–S10
R11–S11
R12–S12
R13–S13
R14–S14
R15–S15

Table 2-9. Universal and System Registers (Cont’d)

Register Description

ADSP-21160 SHARC DSP Instruction Set Reference 2-29

Instruction Summary

System register (sreg & ureg) USTAT1–USTAT2
USTAT3–USTAT4
ASTATx–ASTATy
STKYx–STKYy

Bus exchange register (ureg) PX1–PX2

Table 2-10. Complementary Registers (Ureg–Cureg)

Register Type SIMD Mode Complementary Registers

Universal Register Codes

2-30 ADSP-21160 SHARC DSP Instruction Set Reference

Table 2-11 shows how Ureg register codes appear to PEx.

Table 2-11. Processing Element X Universal Register Codes
(SISD/SIMD)

Bits:
3210

Bits:
7654
0000 0001 0010 0011 0100 0101 0110 0111

0000 R0 I0 M0 L0 B0 S0 FADDR USTAT1

0001 R1 I1 M1 L1 B1 S1 DADDR USTAT2

0010 R2 I2 M2 L2 B2 S2 MODE1

0011 R3 I3 M3 L3 B3 S3 PC MMASK

0100 R4 I4 M4 L4 B4 S4 PCSTK MODE2

0101 R5 I5 M5 L5 B5 S5 PCSTKP FLAGS

0110 R6 I6 M6 L6 B6 S6 LADDR ASTATx

0111 R7 I7 M7 L7 B7 S7 CURL-
CNTR

ASTATy

1000 R8 I8 M8 L8 B8 S8 LCNTR STKYx

1001 R9 I9 M9 L9 B9 S9 EMUCLK STKYy

1010 R10 I10 M10 L10 B10 S10 EMUCLK2 IRPTL

1011 R11 I11 M11 L11 B11 S11 PX IMASK

1100 R12 I12 M12 L12 B12 S12 PX1 IMASKP

1101 R13 I13 M13 L13 B13 S13 PX2 LRPTL

1110 R14 I14 M14 L14 B14 S14 TPERIOD USTAT3

1111 R15 I15 M15 L15 B15 S15 TCOUNT USTAT4

ADSP-21160 SHARC DSP Instruction Set Reference 2-31

Instruction Summary

Table 2-12 shows how Ureg register codes appear to PEy.

Table 2-12. Processing Element Y Universal Register Codes (SIMD)

Bits:
3210

Bits:
7654
0000 0001 0010 0011 0100 0101 0110 0111

0000 S0 I0 M0 L0 B0 R0 FADDR USTAT2

0001 S1 I1 M1 L1 B1 R1 DADDR USTAT1

0010 S2 I2 M2 L2 B2 R2 MODE1

0011 S3 I3 M3 L3 B3 R3 PC MMASK

0100 S4 I4 M4 L4 B4 R4 PCSTK MODE2

0101 S5 I5 M5 L5 B5 R5 PCSTKP FLAGS

0110 S6 I6 M6 L6 B6 R6 LADDR ASTATy

0111 S7 I7 M7 L7 B7 R7 CURL-
CNTR

ASTATx

1000 S8 I8 M8 L8 B8 R8 LCNTR STKYy

1001 S9 I9 M9 L9 B9 R9 EMUCLK STKYx

1010 S10 I10 M10 L10 B10 R10 EMUCLK2 IRPTL

1011 S11 I11 M11 L11 B11 R11 PX IMASK

1100 S12 I12 M12 L12 B12 R12 PX2 IMASKP

1101 S13 I13 M13 L13 B13 R13 PX1 LRPTL

1110 S14 I14 M14 L14 B14 R14 TPERIOD USTAT4

1111 S15 I15 M15 L15 B15 R15 TCOUNT USTAT3

ADSP-21160 Instruction Opcode Map

2-32 ADSP-21160 SHARC DSP Instruction Set Reference

ADSP-21160 Instruction Opcode Map
Table 2-13. ADSP-21160 DSP Opcodes (Bits 47–27)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

“Type 1: Compute,
Dreg«···»DM |
Dreg«···»PM”

001
D
M
D

DMI DMM
P
M
D

DM DREG PMI PMM

“Type 2: Compute”
000 00001 COND

“Type 3: Compute,
ureg«···»DM | PM, reg-
ister modify”

010 U I M COND G D L UREG>

“Type 4: Compute,
dreg«···»DM | PM, data
modify”

011 0 I G D U COND DATA

(a) “Type 5: Compute,
ureg«···»ureg |
Xdreg<->Ydreg”

011 1 0 SRC UREG COND SU
DEST
UREG>

(b) “Type 5: Compute,
ureg«···»ureg |
Xdreg<->Ydreg”

011 1 1 Y DREG COND

(a) “Type 6: Immedi-
ate Shift, dreg«···»DM |
PM”

100 0 I M COND G D DATAEX

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

ADSP-21160 SHARC DSP Instruction Set Reference 2-33

Instruction Summary

Table 2-14. ADSP-21160 DSP Opcodes (Bits 26–0)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PM DREG COMPUTE

COMPUTE

<UREG COMPUTE

DREG COMPUTE

<DEST
UREG

COMPUTE

X DREG COMPUTE

DREG 0 SHIFTOP DATA RN RX

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-21160 Instruction Opcode Map

2-34 ADSP-21160 SHARC DSP Instruction Set Reference

Table 2-15. ADSP-21160 DSP Opcodes (Bits 47–27)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

(b) “Type 6: Immedi-
ate Shift, dreg«···»DM |
PM”

000 00010 COND DATAEX

“Type 7: Compute,
modify” 000 00100 G COND I M

(a) “Type 8: Direct
Jump | Call” 000 00110 B A COND

(b) “Type 8: Direct
Jump | Call” 000 00111 B A COND

(a) “Type 9: Indirect
Jump | Call, Compute” 000 01000 B A COND PMI PMM

(b) “Type 9: Indirect
Jump | Call, Compute” 000 01001 B A COND RELADDR

(a) “Type 10: Indirect
Jump | Compute,
dreg«···»DM”

110 D DMI DMM COND PMI PMM

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

ADSP-21160 SHARC DSP Instruction Set Reference 2-35

Instruction Summary

Table 2-16. ADSP-21160 DSP Opcodes (Bits 26–0)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SHIFTOP DATA RN RX

COMPUTE

J CI ADDR

J CI RELADDR

J E CI COMPUTE

J E CI COMPUTE

DREG COMPUTE

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-21160 Instruction Opcode Map

2-36 ADSP-21160 SHARC DSP Instruction Set Reference

Table 2-17. ADSP-21160 DSP Opcodes (Bits 47–27)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

(b) “Type 10: Indirect
Jump | Compute,
dreg«···»DM”

111 D DMI DMM COND RELADDR

(a) “Type 11: Return
From Subroutine |
Interrupt, Compute”

000 01010 COND

(b) “Type 11: Return
From Subroutine |
Interrupt, Compute”

000 01011 COND

(a) “Type 12: Do Until
Counter Expired” 000 01100 DATA>

(b) “Type 12: Do Until
Counter Expired” 000 01101 0 UREG

“Type 13: Do Until”
000 01110 TERM

“Type 14: Ureg«···»DM
| PM (direct address-
ing)”

000 100 G D L UREG ADDR
(upper 5 bits)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

ADSP-21160 SHARC DSP Instruction Set Reference 2-37

Instruction Summary

Table 2-18. ADSP-21160 DSP Opcodes (Bits 26–0) (Cont’d)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DREG COMPUTE

J E L
R

COMPUTE

J E COMPUTE

<DATA RELADDR

RELADDR

RELADDR

ADDR
(lower 27 bits)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-21160 Instruction Opcode Map

2-38 ADSP-21160 SHARC DSP Instruction Set Reference

Table 2-19. ADSP-21160 DSP Opcodes (Bits 47–27)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

“Type 15: Ureg«···»DM
| PM (indirect address-
ing)”

101 G I D L UREG DATA
(upper 5 bits)

“Type 16: Immediate
data···»DM | PM” 100 1 I M G DATA

(upper 5 bits)

“Type 17: Immediate
data···»Ureg” 000 01111 0 UREG DATA

(upper 5 bits)

“Type 18: System Reg-
ister Bit Manipulation” 000 10100 BOP SREG DATA

(upper 5 bits)

(a) “Type 19: I Regis-
ter Modify |
Bit-Reverse”

000 10110 0 G I DATA
(upper 5 bits)

(b)“Type 19: I Register
Modify | Bit-Reverse” 000 10110 1 G I DATA

(upper 5 bits)

“Type 20: Push, Pop
Stacks, Flush Cache” 000 10111

L
P
U

L
P
O

S
P
U

S
P
O

P
P
U

P
P
O

F
C

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

ADSP-21160 SHARC DSP Instruction Set Reference 2-39

Instruction Summary

Table 2-20. ADSP-21160 DSP Opcodes (Bits 26–0) (Cont’d)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 27 bits)

DATA
(lower 27 bits)

DATA
(lower 27 bits)

DATA
(lower 27 bits)

DATA
(lower 27 bits)

DATA
(lower 27 bits)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-21160 Instruction Opcode Map

2-40 ADSP-21160 SHARC DSP Instruction Set Reference

Table 2-21. ADSP-21160 DSP Opcodes (Bits 47–27)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

“Type 21: Nop”
000 00000 0

“Type 22: Idle”
000 00000 1

Type 23: Idle16
Not supported on ADSP-21160

Type 24: creg«···»ureg
Not documented on ADSP-21160

(a) “Type 25:
Cjump/Rframe” 0001 1000 0000 0100 0000 0

(b) “Type 25:
Cjump/Rframe” 0001 1000 0100 0100 0000 0

(c) “Type 25:
Cjump/Rframe” 0001 1001 0000 0000 0000 0

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

ADSP-21160 SHARC DSP Instruction Set Reference 2-41

Instruction Summary

Table 2-22. ADSP-21160 DSP Opcodes (Bits 26–0)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 ADDR

000 RELADDR

000 0000 0000 0000 0000 0000 0000

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-21160 Instruction Opcode Map

2-42 ADSP-21160 SHARC DSP Instruction Set Reference

ADSP-21160 SHARC DSP Instruction Set Reference 3-1

3 COMPUTE AND MOVE

The compute and move instructions in the Group I set of instructions
specify a compute operation in parallel with one or two data moves or an
index register modify.

Group I Instructions
The instructions in this group contain a COMPUTE field that specifies a com-
pute operation using the ALU, multiplier, or shifter. Because there are a
large number of options available for computations, these operations are
described separately in the “Computations Reference” on page 7-1. Note
that data moves between the MR registers and the register file are consid-
ered multiplier operations and are covered in the “Computations
Reference” on page 7-1. Group I instructions include the following.

• “Type 1: Compute, Dreg«···»DM | Dreg«···»PM” on page 3-3

Parallel data memory and program memory transfers with register
file, optional compute operation

• “Type 2: Compute” on page 3-7

Compute operation, optional condition

• “Type 3: Compute, ureg«···»DM | PM, register modify” on
page 3-9

Transfer between data or program memory and universal register,
optional condition, optional compute operation

Group I Instructions

3-2 ADSP-21160 SHARC DSP Instruction Set Reference

• “Type 4: Compute, dreg«···»DM | PM, data modify” on page 3-14

PC-relative transfer between data or program memory and register
file, optional condition, optional compute operation

• “Type 5: Compute, ureg«···»ureg | Xdreg<->Ydreg” on page 3-19

Transfer between two universal registers, optional condition,
optional compute operation

• “Type 6: Immediate Shift, dreg«···»DM | PM” on page 3-23

Immediate shift operation, optional condition, optional transfer
between data or program memory and register file

• “Type 7: Compute, modify” on page 3-28

Index register modify, optional condition, optional compute
operation

ADSP-21160 SHARC DSP Instruction Set Reference 3-3

Compute and Move

Type 1: Compute, Dreg«···»DM | Dreg«···»PM

Parallel data memory and program memory transfers with register file,
option compute operation

Syntax

Function (SISD)

In SISD mode, the Type 1 instruction provides parallel accesses to data
and program memory from the register file. The specified I registers
address data and program memory. The I values are post-modified and
updated by the specified M registers. Pre-modify offset addressing is not
supported. For more information on register restrictions, see the “Data
Address Generators” chapter of the ADSP-21160 SHARC DSP Hardware
Reference.

Function (SIMD)

In SIMD mode, the Type 1 instruction provides the same parallel accesses
to data and program memory from the register file as are available in SISD
mode, but provides these operations simultaneously for the X and Y pro-
cessing elements.

The X element uses the specified I registers to address data and program
memory, and the Y element adds one to the specified I registers to address
data and program memory. If the broadcast read bits—BDCST1 (for I1) or
BDCST9 (for I9)—are set, the Y element uses the specified I register with-
out adding one.

compute , DM(Ia, Mb) = dreg1 , PM(Ic, Md) = dreg2 ;

, dreg1 = DM(Ia, Mb) , dreg2 = PM(Ic, Md)

Type 1: Compute, Dreg«···»DM | Dreg«···»PM

3-4 ADSP-21160 SHARC DSP Instruction Set Reference

The I values are post-modified and updated by the specified M registers.
Pre-modify offset addressing is not supported. For more information on
register restrictions, see the “Data Address Generators” chapter of the
ADSP-21160 SHARC DSP Hardware Reference.

The X element uses the specified Dreg registers, and the Y element uses
the complementary registers (Cdreg) that correspond to the Dreg registers.
For a list of complementary registers, see Table 2-10 on page 2-28.

The following pseudo code compares the Type 1 instruction’s explicit and
implicit operations in SIMD mode.

Examples

R7=BSET R6 BY R0, DM(I0,M3)=R5, PM(I11,M15)=R4;

R8=DM(I4,M1), PM(I12 M12)=R0;

When the ADSP-21160 processor is in SISD, the first instruction in this
example performs a computation along with two memory writes. DAG1 is
used to write to DM and DAG2 is used to write to PM. In the second
instruction, a read from data memory to register R8 and a write to program
memory from register R0 are performed.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

compute , DM(Ia, Mb) = dreg1 , PM(Ic, Md) = dreg2 ;

, dreg1 = DM(Ia, Mb) , dreg2 = PM(Ic, Md)

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

compute , DM(Ia+1, 0) = cdreg1 , PM(Ic+1, 0) = cdreg2 ;

, cdreg1 = DM(Ia+1, 0) , cdreg2 = PM(Ic+1, 0)

Do not use the pseudo code above as instruction syntax.

ADSP-21160 SHARC DSP Instruction Set Reference 3-5

Compute and Move

When the ADSP-21160 DSP is in SIMD, the first instruction in this
example performs the same computation and performs two writes in paral-
lel on both PEx and PEy. The R7 register on PEx and S7 on PEy both store
the results of the Bset computations. Also, simultaneous dual memory
writes occur with DM and PM, writing in values from R5, S5 (DM) and
R4, S4 (PM) respectively. In the second instruction, values are simulta-
neously read from data memory to registers R8 and S8 and written to
program memory from registers R0 and S0.

R0=DM(I1,M1);

When the ADSP-21160 processor is in broadcast from the BDCST1 bit
being set in the MODE1 system register, the R0 (PEx) data register in this
example is loaded with the value from data memory utilizing the I1 regis-
ter from DAG1, and S0 (PEy) is loaded with the same value.

Type 1 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

001
D
M
D

DMI DMM
P
M
D

DM DREG PMI PMM PM DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Type 1: Compute, Dreg«···»DM | Dreg«···»PM

3-6 ADSP-21160 SHARC DSP Instruction Set Reference

Bits Description

DMD, PMD Select the access types (read or write)

DM DREG,
PM DREG

Specify register file location.

DMI, PMI Specify I registers for data and program memory

DMM, PMM Specify M registers used to update the I registers

COMPUTE Defines a compute operation to be performed in parallel with the data accesses; if
omitted, this is a NOP

ADSP-21160 SHARC DSP Instruction Set Reference 3-7

Compute and Move

Type 2: Compute

Compute operation, optional condition

Syntax

Function (SISD)

In SISD mode, the Type 2 instruction provides a conditional compute
instruction. The instruction is executed if the specified condition tests
true.

Function (SIMD)

In SIMD mode, the Type 2 instruction provides the same conditional
compute instruction as is available in SISD mode, but provides the opera-
tion simultaneously for the X and Y processing elements. The instruction
is executed in a processing element if the specified condition tests true in
that element independent of the condition result for the other element.

The following pseudo code compares the Type 2 instruction’s explicit and
implicit operations in SIMD mode.

IF COND compute ;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute ;

Do not use the pseudo code above as instruction syntax.

Type 2: Compute

3-8 ADSP-21160 SHARC DSP Instruction Set Reference

Examples

IF MV R6=SAT MRF (UI);

When the ADSP-21160 DSP is in SISD, the condition is evaluated in the
PEx processing element. If the condition is true, the computation is per-
formed and the result is stored in register R6.

When the ADSP-21160 DSP is in SIMD, the condition is evaluated on
each processing element, PEx and PEy, independently. The computation
executes on both PE’s, either one PE, or neither PE dependent on the out-
come of the condition. If the condition is true in PEx, the computation is
performed and the result is stored in register R6. If the condition is true in
PEy, the computation is performed and the result is stored in register S6.

Type 2 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 00001 COND

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Bits Description

COND Selects whether the operation specified in the COMPUTE field is executed. If the
COND is true, the compute is executed. If no condition is specified, COND is
TRUE condition, and the compute is executed.

ADSP-21160 SHARC DSP Instruction Set Reference 3-9

Compute and Move

Type 3: Compute, ureg«···»DM | PM, register modify

Transfer operation between data or program memory and universal regis-
ter, optional condition, optional compute operation

Syntax

Function (SISD)

In SISD mode, the Type 3 instruction provides access between data or
program memory and a universal register. The specified I register
addresses data or program memory. The I value is either pre-modified (M,
I order) or post-modified (I, M order) by the specified M register. If it is
post-modified, the I register is updated with the modified value. If a com-
pute operation is specified, it is performed in parallel with the data access.
The optional (LW) in this syntax lets you specify Long Word addressing,
overriding default addressing from the memory map. If a condition is
specified, it affects the entire instruction. Note that the Ureg may not be
from the same DAG (that is, DAG1 or DAG2) as Ia/Mb or Ic/Md. For
more information on register restrictions, see the “Data Address Genera-
tors” chapter of the ADSP-21160 SHARC DSP Hardware Reference.

IF COND compute , DM(Ia, Mb) = ureg (LW);

, PM(Ic, Md)

, DM(Mb, Ia) = ureg (LW);

, PM(Md, Ic)

, ureg = DM(Ia, Mb) (LW);

PM(Ic, Md) (LW);

, ureg = DM(Mb, Ia) (LW);

PM(Md, Ic) (LW);

Type 3: Compute, ureg«···»DM | PM, register modify

3-10 ADSP-21160 SHARC DSP Instruction Set Reference

Function (SIMD)

In SIMD mode, the Type 3 instruction provides the same access between
data or program memory and a universal register as is available in SISD
mode, but provides this operation simultaneously for the X and Y process-
ing elements.

The X element uses the specified I register to address data or program
memory. The I value is either pre-modified (M, I order) or post-modified
(I, M order) by the specified M register. The Y element adds one to the
specified I register (before pre-modify or post-modify) to address data or
program memory. If the broadcast read bits—BDCST1 (for I1) or BDCST9
(for I9)—are set, the Y element uses the specified I and M registers with-
out adding one. If the I value post-modified, the I register is updated with
the modified value from the specified M register. The optional (LW) in
this syntax lets you specify Long Word addressing, overriding default
addressing from the memory map.

For the universal register, the X element uses the specified Ureg register,
and the Y element uses the corresponding complementary register
(Cureg). For a list of complementary registers, see Table 2-10 on
page 2-28. Note that the Ureg may not be from the same DAG (DAG1 or
DAG2) as Ia/Mb or Ic/Md.

If a compute operation is specified, it is performed simultaneously on the
X and Y processing elements in parallel with the data access. If a condi-
tion is specified, it affects the entire instruction. The instruction is
executed in a processing element if the specified condition tests true in
that element independent of the condition result for the other element.

ADSP-21160 SHARC DSP Instruction Set Reference 3-11

Compute and Move

The following pseudo code compares the Type 3 instruction’s explicit and
implicit operations in SIMD mode.

Examples

R6=R3-R11, DM(I0,M1)=ASTATx;

IF NOT SV F8=CLIP F2 BY F14, F7=PM(I12,M12);

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute , DM(Ia, Mb) = ureg (LW);

, PM(Ic, Md)

, DM(Mb, Ia) = ureg (LW);

, PM(Md, Ic)

, ureg = DM(Ia, Mb) (LW);

PM(Ic, Md) (LW);

, ureg = DM(Mb, Ia) (LW);

PM(Md, Ic) (LW);

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute , DM(Ia+1, 0) = cureg (LW);

, PM(Ic+1, 0)

, DM(Mb+1, Ia) = cureg (LW);

, PM(Md+1, Ic)

, cureg = DM(Ia+1, 0) (LW);

PM(Ic+, 0) (LW);

, cureg = DM(Mb+1, Ia) (LW);

PM(Md+1, Ic) (LW);

Do not use the pseudo code above as instruction syntax.

Type 3: Compute, ureg«···»DM | PM, register modify

3-12 ADSP-21160 SHARC DSP Instruction Set Reference

When the ADSP-21160 processor is in SISD, the computation and a data
memory write in the first instruction are performed in PEx. The second
instruction stores the result of the computation in F8, and the result of the
program memory read into F7 if the condition’s outcome is true.

When the ADSP-21160 processor is in SIMD, the result of the computa-
tion in PEx in the first instruction is stored in R6, and the result of the
parallel computation in PEy is stored in S6. In addition, there is a simulta-
neous data memory write of the values stored in ASTATx and ASTATy. The
condition is evaluated on each processing element, PEx and PEy, indepen-
dently. The computation executes on both PE’s, either one PE, or neither
PE, dependent on the outcome of the condition. If the condition is true in
PEx, the computation is performed, the result is stored in register F8 and
the result of the program memory read is stored in F7. If the condition is
true in PEy, the computation is performed, the result is stored in register
SF8, and the result of the program memory read is stored in SF7.

IF NOT SV F8=CLIP F2 BY F14, F7=PM(I9,M12);

When the ADSP-21160 DSP is in broadcast from the BDCST9 bit being set
in the MODE1 system register and the condition tests true, the computation
is performed and the result is stored in register F8. Also, the result of the
program memory read via the I9 register from DAG2 is stored in F7. The
SF7 register is loaded with the same value from program memory as F7.

Type 3 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

010 U I M COND G D L UREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

ADSP-21160 SHARC DSP Instruction Set Reference 3-13

Compute and Move

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

D Selects the access Type (read or write)

G Selects data memory or program memory

L Forces a long word (LW) access when address is in normal word address range

UREG Specifies the universal register

I Specifies the I register

M Specifies the M register

U Selects either update (post-modify) or no update (pre-modify)

COMPUTE Defines a compute operation to be performed in parallel with the data access; if
omitted, this is a NOP

Type 4: Compute, dreg«···»DM | PM, data modify

3-14 ADSP-21160 SHARC DSP Instruction Set Reference

Type 4: Compute, dreg«···»DM | PM, data modify

PC-relative transfer between data or program memory and register file,
optional condition, optional compute operation

Syntax

Function (SISD)

In SISD mode, the Type 4 instruction provides access between data or
program memory and the register file. The specified I register addresses
data or program memory. The I value is either pre-modified (data order, I)
or post-modified (I, data order) by the specified immediate data. If it is
post-modified, the I register is updated with the modified value. If a com-
pute operation is specified, it is performed in parallel with the data access.
If a condition is specified, it affects the entire instruction. For more infor-
mation on register restrictions, see the “Data Address Generators” chapter
of the ADSP-21160 SHARC DSP Hardware Reference.

IF COND compute , DM(Ia, <data6>) = dreg ;

, PM(Ic, <data6>)

, DM(<data6>, Ia) = dreg ;

, PM(<data6>, Ic)

, dreg = DM(Ia, <data6>) ;

PM(Ic, <data6>) ;

, dreg = DM(<data6>, Ia) ;

PM(<data6>, Ic) ;

ADSP-21160 SHARC DSP Instruction Set Reference 3-15

Compute and Move

Function (SIMD)

In SIMD mode, the Type 4 instruction provides the same access between
data or program memory and the register file as is available in SISD mode,
but provides the operation simultaneously for the X and Y processing
elements.

The X element uses the specified I register to address data or program
memory. The I value is either pre-modified (data, I order) or post-modi-
fied (I, data order) by the specified immediate data. The Y element adds
one to the specified I register (before pre-modify or post-modify) to
address data or program memory. If the broadcast read bits—BDCST1 (for
I1) or BDCST9 (for I9)—are set, the Y element uses the specified I and M
registers without adding one. If the I value post-modified, the I register is
updated with the modified value from the specified M register. The
optional (LW) in this syntax lets you specify Long Word addressing, over-
riding default addressing from the memory map.

For the data register, the X element uses the specified Dreg register, and
the Y element uses the corresponding complementary register (Cdreg). For
a list of complementary registers, see Table 2-10 on page 2-28.

If a compute operation is specified, it is performed simultaneously on the
X and Y processing elements in parallel with the data access. If a condi-
tion is specified, it affects the entire instruction, not just the
computation. The instruction is executed in a processing element if the
specified condition tests true in that element independent of the condi-
tion result for the other element.

Type 4: Compute, dreg«···»DM | PM, data modify

3-16 ADSP-21160 SHARC DSP Instruction Set Reference

The following pseudo code compares the Type 4 instruction’s explicit and
implicit operations in SIMD mode.

Examples

IF FLAG0_IN F1=F5*F12, F11=PM(I10,6);

R12=R3 AND R1, DM(6,I1)=R6;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute , DM(Ia, <data6>) = dreg ;

, PM(Ic, <data6>)

, DM(<data6>, Ia) = dreg ;

, PM(<data6>, Ic)

, dreg = DM(Ia, <data6>) ;

PM(Ic, <data6>) ;

, dreg = DM(<data6>, Ia) ;

PM(<data6>, Ic) ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute , DM(Ia+1, 0) = cdreg ;

, PM(Ic+1, 0)

, DM(<data6>+1, Ia) = cdreg ;

, PM(<data6>+1, Ic)

, cdreg = DM(Ia+1, 0) ;

PM(Ic+1, 0) ;

, cdreg = DM(<data6>+1, Ia) ;

PM(<data6>+1, Ic) ;

Do not use the pseudo code above as instruction syntax.

ADSP-21160 SHARC DSP Instruction Set Reference 3-17

Compute and Move

When the ADSP-21160 is in SISD, the computation and program mem-
ory read in the first instruction are performed in PEx if the condition’s
outcome is true. The second instruction stores the result of the logical
AND in R12 and writes the value within R6 into data memory.

When the ADSP-21160 is in SIMD, the condition is evaluated on each
processing element, PEx and PEy, independently. The computation and
program memory read execute on both PE’s, either one PE, or neither PE
dependent on the outcome of the condition. If the condition is true in
PEx, the computation is performed, and the result is stored in register F1,
and the program memory value is read into register F11. If the condition is
true in PEy, the computation is performed, the result is stored in register
SF1, and the program memory value is read into register SF11.

If FLAG0_IN F1=F5*F12, F11=PM(I9,3);

When the ADSP-21160 is in broadcast from the BDCST9 bit is set in the
MODE1 system register and the condition tests true, the computation is per-
formed, the result is stored in register F1, and the program memory value
is read into register F11 via the I9 register from DAG2. The SF11 register
is also loaded with the same value from program memory as F11.

 Type 4 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

011 0 I G D U COND DATA DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Type 4: Compute, dreg«···»DM | PM, data modify

3-18 ADSP-21160 SHARC DSP Instruction Set Reference

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

D Selects the access Type (read or write)

G Selects data memory or program memory

DREG Specifies the register file location

I Specifies the I register

DATA Specifies a 6-bit, twos-complement modify value

U Selects either pre-modify without update or post-modify with update

COMPUTE Defines a compute operation to be performed in parallel with the data access; if
omitted, this is a NOP

ADSP-21160 SHARC DSP Instruction Set Reference 3-19

Compute and Move

Type 5: Compute, ureg«···»ureg | Xdreg<->Ydreg

Transfer between two universal registers or swap between a data register in
each processing element, optional condition, optional compute operation

Syntax

Function (SISD)

In SISD mode, the Type 5 instruction provides transfer (=) from one uni-
versal register to another or provides a swap (<->) between a data register
in the X processing element and a data register in the Y processing ele-
ment. If a compute operation is specified, it is performed in parallel with
the data access. If a condition is specified, it affects the entire instruction.

Function (SIMD)

In SIMD mode, the Type 5 instruction provides the same transfer (=)
from one register to another as is available in SISD mode, but provides
this operation simultaneously for the X and Y processing elements. The
swap (<->) operation does the same operation in SISD and SIMD modes;
no extra swap operation occurs in SIMD mode.

In the transfer (=), the X element transfers between the universal registers
Ureg1 and Ureg2, and the Y element transfers between the complemen-
tary universal registers Cureg1 and Cureg2. For a list of complementary
registers, see Table 2-10 on page 2-28.

IF COND compute, ureg1 = ureg2 ;

X dreg <-> Y dreg

Type 5: Compute, ureg«···»ureg | Xdreg<->Ydreg

3-20 ADSP-21160 SHARC DSP Instruction Set Reference

If a compute operation is specified, it is performed simultaneously on the
X and Y processing elements in parallel with the transfer. If a condition is
specified, it affects the entire instruction. The instruction is executed in a
processing element if the specified condition tests true in that element
independent of the condition result for the other element.

The following pseudo code compares the Type 5 instruction’s explicit and
implicit operations in SIMD mode.

Examples

IF TF MRF=R2*R6(SSFR), M4=R0;

LCNTR=L7;

R0 <-> S1;

When the ADSP-21160 processor is in SISD, the condition in the first
instruction is evaluated in the PEx processing element. If the condition is
true, MRF is loaded with the result of the computation and a register trans-
fer occurs between R0 and M4. The second instruction initializes the loop
counter independent of the outcome of the first instruction’s condition.
The third instruction swaps the register contents between R0 and S1.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute, ureg1 = ureg2 ;

X dreg <-> Y dreg

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute, cureg1 = cureg2 ;

{no implicit operation}

Do not use the pseudo code above as instruction syntax.

ADSP-21160 SHARC DSP Instruction Set Reference 3-21

Compute and Move

When the ADSP-21160 DSP is in SIMD, the condition is evaluated on
each processing element, PEx and PEy, independently. The computation
executes on both PE’s, either one PE, or neither PE dependent on the out-
come of the condition. For the register transfer to complete, the condition
must be satisfied in both PEx and PEy. The second instruction initializes
the loop counter independent of the outcome of the first instruction’s
condition. The third instruction swaps the register contents between R0
and S1—the SISD and SIMD swap operation is the same.

Type 5 Opcode (Ureg = Ureg transfer)

Type 5 Opcode (X Dreg <-> Y Dreg swap)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

011 1 0 SRC UREG COND SU DEST UREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

011 1 1 Y DREG COND X DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Type 5: Compute, ureg«···»ureg | Xdreg<->Ydreg

3-22 ADSP-21160 SHARC DSP Instruction Set Reference

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

SRC UREG Identifies the universal register source. (highest 5 bits of register code)

SU Identifies the universal register source. (lowest 2 bits of register code)

DEST UREG Identifies the universal register destination

Y DREG Identifies the PEy data registers for swap (must appear to right of swap operator)

X DREG Identifies the PEx data register for swap (must appear to left of swap operator)

COMPUTE Defines a compute operation to be performed in parallel with the data transfer; if
omitted, this is a NOP

ADSP-21160 SHARC DSP Instruction Set Reference 3-23

Compute and Move

Type 6: Immediate Shift, dreg«···»DM | PM

Immediate shift operation, optional condition, optional transfer between
data or program memory and register file

Syntax

Function (SISD)

In SISD mode, the Type 6 instruction provides an immediate shift, which
is a shifter operation that takes immediate data as its Y-operand. The
immediate data is one 8-bit value or two 6-bit values, depending on the
operation. The X-operand and the result are register file locations.

For more information on shifter operations, see “Shifter Operations” on
page 7-64. For more information on register restrictions, see the “Data
Address Generators” chapter of the ADSP-21160 SHARC DSP Hardware
Reference.

If an access to data or program memory from the register file is specified,
it is performed in parallel with the shifter operation. The I register
addresses data or program memory. The I value is post-modified by the
specified M register and updated with the modified value. If a condition
is specified, it affects the entire instruction.

Function (SIMD)

In SIMD mode, the Type 6 instruction provides the same immediate shift
operation as is available in SISD mode, but provides this operation simul-
taneously for the X and Y processing elements.

IF COND shiftimm , DM(Ia, Mb) = dreg ;

, PM(Ic, Md)

, dreg = DM(Ia, Mb) ;

PM(Ic, Md) ;

Type 6: Immediate Shift, dreg«···»DM | PM

3-24 ADSP-21160 SHARC DSP Instruction Set Reference

If an access to data or program memory from the register file is specified,
it is performed simultaneously on the X and Y processing elements in par-
allel with the shifter operation.

The X element uses the specified I register to address data or program
memory. The I value is post-modified by the specified M register and
updated with the modified value.The Y element adds one to the specified I
register to address data or program memory. If the broadcast read bits—
BDCST1 (for I1) or BDCST9 (for I9)—are set, the Y element uses the speci-
fied I and M registers without adding one.

If a condition is specified, it affects the entire instruction. The instruction
is executed in a processing element if the specified condition tests true in
that element independent of the condition result for the other element.

The following pseudo code compares the Type 6 instruction’s explicit and
implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND shiftimm , DM(Ia, Mb) = dreg ;

, PM(Ic, Md)

, dreg = DM(Ia, Mb) ;

PM(Ic, Md) ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND shiftimm , DM(Ia+1, 0) = cdreg ;

, PM(Ic+1, 0)

, cdreg = DM(Ia+1, 0) ;

PM(Ic+1, 0) ;

Do not use the pseudo code above as instruction syntax.

ADSP-21160 SHARC DSP Instruction Set Reference 3-25

Compute and Move

Examples

IF GT R2 = LSHIFT R6 BY 0x4, DM(I4,M4)=R0;

IF NOT SZ R3 = FEXT R1 BY 8:4;

When the ADSP-21160 processor is in SISD, the computation and data
memory write in the first instruction are performed in PEx if the condi-
tion’s outcome is true. In the second instruction, register R3 is loaded with
the result of the computation if the outcome of the condition is true.

When the ADSP-21160 processor is in SIMD, the condition is evaluated
on each processing element, PEx and PEy, independently. The computa-
tion and data memory write executes on both PE’s, either one PE, or
neither PE dependent on the outcome of the condition. If the condition is
true in PEx, the computation is performed, the result is stored in register
R2, and the data memory value is written from register R0. If the condition
is true in PEy, the computation is performed, the result is stored in regis-
ter S2, and the value within S0 is written into data memory. The second
instruction’s condition is also evaluated on each processing element, PEx
and PEy, independently. If the outcome of the condition is true, register
R3 is loaded with the result of the computation on PEx, and register S3 is
loaded with the result of the computation on PEy.

R2 = LSHIFT R6 BY 0x4, F3=DM(I1,M3);

When the ADSP-21160 DSP is in broadcast from the BDCST1 bit being set
in the MODE1 system register, the computation is performed, the result is
stored in R2, and the data memory value is read into register F3 via the I1
register from DAG1. The SF3 register is also loaded with the same value
from data memory as F3.

Type 6: Immediate Shift, dreg«···»DM | PM

3-26 ADSP-21160 SHARC DSP Instruction Set Reference

Type 6 Opcode (with data access)

Type 6 Opcode (without data access)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

100 0 I M COND G D DATAEX DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SHIFTOP DATA RN RX

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 00010 COND DATAEX

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SHIFTOP DATA RN RX

ADSP-21160 SHARC DSP Instruction Set Reference 3-27

Compute and Move

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

SHIFTOP Specifies the shifter operation. For more information, see “Shifter Operations” on
page 7-64

DATA Specifies an 8-bit immediate shift value. For shifter operations requiring two 6-bit
values (a shift value and a length value), the DATAEX field adds 4 MSBs to the
DATA field, creating a 12-bit immediate value. The six LSBs are the shift value,
and the six MSBs are the length value.

D Selects the access Type (read or write) if a memory access is specified

G Selects data memory or program memory

DREG Specifies the register file location

I Specifies the I register, which is post-modified and updated by the M register

M Identifies the M register for post-modify

Type 7: Compute, modify

3-28 ADSP-21160 SHARC DSP Instruction Set Reference

Type 7: Compute, modify

Index register modify, optional condition, optional compute operation

Syntax

Function (SISD)

In SISD mode, the Type 7 instruction provides an update of the specified
I register by the specified M register. If a compute operation is specified, it
is performed in parallel with the data access. If a condition is specified, it
affects the entire instruction. For more information on register restric-
tions, see the “Data Address Generators” chapter of the ADSP-21160
SHARC DSP Hardware Reference.

If the DAG’s Lx and Bx registers that correspond to Ia or Ic are set
up for circular bufferring, the Modify operation always executes
circular buffer wrap around, independent of the state of the
CBUFEN bit.

Function (SIMD)

In SIMD mode, the Type 7 instruction provides the same update of the
specified I register by the specified M register as is available in SISD
mode, but provides additional features for the optional compute operation.

If a compute operation is specified, it is performed simultaneously on the
X and Y processing elements in parallel with the transfer. If a condition is
specified, it affects the entire instruction. The instruction is executed in a
processing element if the specified condition tests true in that element
independent of the condition result for the other element.

The following pseudo code compares the Type 7 instruction’s explicit and
implicit operations in SIMD mode.

IF COND compute , MODIFY (Ia, Mb) ;

(Ic, Md) ;

ADSP-21160 SHARC DSP Instruction Set Reference 3-29

Compute and Move

Examples

IF NOT FLAG2_IN R4=R6*R12(SUF), MODIFY(I10,M8);

IF NOT LCE MODIFY(I3,M1);

When the ADSP-21160 processor is in SISD, the computation and index
register modify in the first instruction are performed in PEx if the condi-
tion’s outcome is true. In the second instruction, an index register
modification occurs if the outcome of the condition is true.

When the ADSP-21160 processor is in SIMD, the condition in the first
instruction is evaluated on each processing element, PEx and PEy, inde-
pendently. The computation executes on both PE’s, either PE, or neither
PE dependent on the outcome of the condition. If the condition is true in
PEx, the computation is performed, and the result is stored in R4. If the
condition is true in PEy, the computation is performed, and the result is
stored in S4. The index register modify operation occurs based on the log-
ical OR’ing of the outcome of the conditions tested on both PE’s. In the
second instruction, the index register modify also occurs based on the log-
ical OR’ing of the outcomes of the conditions tested on both PE’s.
Because both threads of a SIMD sequence may be dependent on a single
DAG index value, either thread needs to be able to cause a modify of the
index.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute , MODIFY (Ia, Mb) ;

(Ic, Md) ;

SIMD Implicit Operation (PEy Operation Implied by the InstructionSyntax)

IF PEy COND compute {no implied MODIFY operation}

Do not use the pseudo code above as instruction syntax.

Type 7: Compute, modify

3-30 ADSP-21160 SHARC DSP Instruction Set Reference

Type 7 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 00100 G COND I M

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

G Selects DAG1 or DAG2

I Specifies the I register

M Specifies the M register

COMPUTE Defines a compute operation to be performed in parallel with the data access; if
omitted, this is a NOP

ADSP-21160 SHARC DSP Instruction Set Reference 4-1

4 PROGRAM FLOW CONTROL

The program control instructions in the Group II set of instructions spec-
ify a program flow operation in parallel with a compute.

Group II Instructions
The instructions in this group contain a COMPUTE field that specifies a com-
pute operation using the ALU, multiplier, or shifter. Because there are a
large number of options available for computations, these operations are
described separately in the “Computations Reference” on page 7-1. Note
that data moves between the MR registers and the register file are consid-
ered multiplier operations and are covered in the “Computations
Reference” on page 7-1. Group II instructions include the following.

• “Type 8: Direct Jump | Call” on page 4-3

Direct (or PC-relative) jump/call, optional condition

• “Type 9: Indirect Jump | Call, Compute” on page 4-8

Indirect (or PC-relative) jump/call, optional condition, optional
compute operation

• “Type 10: Indirect Jump | Compute, dreg«···»DM” on page 4-15

Indirect (or PC-relative) jump or optional compute operation with
transfer between data memory and register file

Group II Instructions

4-2 ADSP-21160 SHARC DSP Instruction Set Reference

• “Type 11: Return From Subroutine | Interrupt, Compute” on
page 4-21

Return from subroutine or interrupt, optional condition, optional
compute operation

• “Type 12: Do Until Counter Expired” on page 4-26

Load loop counter, do loop until loop counter expired

• “Type 13: Do Until” on page 4-28

Do until termination

ADSP-21160 SHARC DSP Instruction Set Reference 4-3

Program Flow Control

Type 8: Direct Jump | Call

Direct (or PC-relative) jump/call, optional condition

Syntax

Function (SISD)

In SISD mode, the Type 8 instruction provides a jump or call to the spec-
ified address or PC-relative address. The PC-relative address is a 24-bit,
twos-complement value. The Type 8 instruction supports the following
modifiers.

• (DB)—delayed branch—starts a delayed branch

• (LA)—loop abort—causes the loop stacks and PC stack to be
popped when the jump is executed. Use the (LA) modifier if the
jump transfers program execution outside of a loop. Do not use
(LA) if there is no loop or if the jump address is within the loop.

• (CI)—clear interrupt—lets you reuse an interrupt while it is being
serviced

Normally, the ADSP-21160 processor ignores and does not latch an inter-
rupt that reoccurs while its service routine is already executing. Jump (CI)
clears the status of the current interrupt without leaving the interrupt ser-
vice routine, This feature reduces the interrupt routine to a normal
subroutine and allows the interrupt to occur again, as a result of a

IF COND JUMP <addr24> (DB) ;

(PC, <reladdr24>) (LA)

(CI)

(DB, LA)

(DB, CI)

IF COND CALL <addr24> (DB) ;

(PC, <reladdr24>)

Group II Instructions

4-4 ADSP-21160 SHARC DSP Instruction Set Reference

different event or task in the ADSP-21160 DSP system. The Jump (CI)
instruction should be located within the interrupt service routine. For
more information on interrupts, see the “Program Sequencer” chapter of
the ADSP-21160 SHARC DSP Hardware Reference.

To reduce the interrupt service routine to a normal subroutine, the Jump
(CI) instruction clears the appropriate bit in the interrupt latch register
(IRPTL) and interrupt mask pointer (IMASKP). The ADSP-21160 DSP then
allows the interrupt to occur again.

When returning from a reduced subroutine, you must use the (LR) modi-
fier of the RTS if the interrupt occurs during the last two instructions of a
loop. For related information, see “Type 11: Return From Subroutine |
Interrupt, Compute” on page 4-21.

Function (SIMD)

In SIMD mode, the Type 8 instruction provides the same Jump or Call
operation as in SISD mode, but provides additional features for handling
the optional condition.

If a condition is specified, the Jump or Call is executed if the specified
condition tests true in both the X and Y processing elements.

The following pseudo code compares the Type 8 instruction’s explicit and
implicit operations in SIMD mode.

SIMD Explicit Operation (Program Sequencer Operation Stated in the Instruction Syntax)

IF (PEx AND PEy
COND) JUMP

<addr24> (DB) ;

(PC, <reladdr24>) (LA)

(CI)

(DB, LA)

(DB, CI)

ADSP-21160 SHARC DSP Instruction Set Reference 4-5

Program Flow Control

Examples

IF AV JUMP(PC,0x00A4) (LA);

CALL init (DB); {init is a program label}

JUMP (PC,2) (DB,CI); {clear current int. for reuse}

When the ADSP-21160 processor is in SISD, the first instruction per-
forms a jump to the PC-relative address depending on the outcome of the
condition tested in PEx. In the second instruction, a jump to the program
label init occurs. A PC-relative jump takes place in the third instruction.

When the ADSP-21160 processor is in SIMD, the first instruction per-
forms a jump to the PC-relative address depending on the logical
AND’ing of the outcomes of the conditions tested in both PE’s. In SIMD
mode, the second and third instructions operate the same as in SISD
mode. In the second instruction, a jump to the program label init occurs.
A PC-relative jump takes place in the third instruction.

IF (PEx AND PEy
COND) CALL

<addr24> (DB) ;

(PC, <reladdr24>)

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

{No explicit PEx operation}

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

{No implicit PEy operation}

Do not use the pseudo code above as instruction syntax.

Group II Instructions

4-6 ADSP-21160 SHARC DSP Instruction Set Reference

Type 8 Opcode (with direct branch)

Type 8 Opcode (with PC-relative branch)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00110 B A COND J CI

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00111 B A COND J CI

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

ADSP-21160 SHARC DSP Instruction Set Reference 4-7

Program Flow Control

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

B Selects the branch type, jump or call. For calls, A and CI are ignored

J Determines whether the branch is delayed or non-delayed

ADDR Specifies a 24-bit program memory address

A Activates loop abort

CI Activates clear interrupt

RELADDR Holds a 24-bit, twos-complement value that is added to the current PC value to
generate the branch address

Group II Instructions

4-8 ADSP-21160 SHARC DSP Instruction Set Reference

Type 9: Indirect Jump | Call, Compute

Indirect (or PC-relative) jump/call, optional condition, optional compute
operation

Syntax

Function (SISD)

In SISD mode, the Type 9 instruction provides a Jump or Call to the
specified PC-relative address or pre-modified I register value. The PC-rel-
ative address is a 6-bit, twos-complement value. If an I register is specified,
it is modified by the specified M register to generate the branch address.
The I register is not affected by the modify operation. The Type 9 instruc-
tion supports the following modifiers:

• (DB)—delayed branch—starts a delayed branch

• (LA)—loop abort—causes the loop stacks and PC stack to be
popped when the jump is executed. Use the (LA) modifier if the
jump transfers program execution outside of a loop. Do not use
(LA) if there is no loop or if the jump address is within the loop.

• (CI)—clear interrupt—lets you reuse an interrupt while it is being
serviced

IF COND JUMP (Md, Ic) (DB) , compute ;

(PC, <reladdr6>) (LA) , ELSE compute

(CI)

(DB, LA)

(DB, CI)

IF COND CALL (Md, Ic) (DB) , compute ;

(PC, <reladdr6>) , ELSE compute

ADSP-21160 SHARC DSP Instruction Set Reference 4-9

Program Flow Control

Normally, the ADSP-21160 DSP ignores and does not latch an interrupt
that reoccurs while its service routine is already executing. Jump (CI)
clears the status of the current interrupt without leaving the interrupt ser-
vice routine. This feature reduces the interrupt routine to a normal
subroutine and allows the interrupt to occur again, as a result of a differ-
ent event or task in the ADSP-21160 DSP system. The Jump (CI)
instruction should be located within the interrupt service routine. For
more information on interrupts, see the “Program Sequencer” chapter of
the ADSP-21160 SHARC DSP Hardware Reference.

To reduce an interrupt service routine to a normal subroutine, the Jump
(CI) instruction clears the appropriate bit in the interrupt latch register
(IRPTL) and interrupt mask pointer (IMASKP). The ADSP-21160 DSP then
allows the interrupt to occur again.

When returning from a reduced subroutine, you must use the (LR) modi-
fier of the RTS instruction if the interrupt occurs during the last two
instructions of a loop. For related information, see “Type 11: Return
From Subroutine | Interrupt, Compute” on page 4-21.

The Jump or Call is executed if the optional specified condition is true or
if no condition is specified. If a compute operation is specified without the
ELSE, it is performed in parallel with the Jump or Call. If a compute opera-
tion is specified with the Else, it is performed only if the condition
specified is false. Note that a condition must be specified if an Else com-
pute clause is specified.

Function (SIMD)

In SIMD mode, the Type 9 instruction provides the same Jump or Call
operation as is available in SISD mode, but provides additional features
for the optional condition.

If a condition is specified, the Jump or Call is executed if the specified
condition tests true in both the X and Y processing elements.

Group II Instructions

4-10 ADSP-21160 SHARC DSP Instruction Set Reference

If a compute operation is specified without the Else, it is performed by the
processing element(s) in which the condition test true in parallel with the
Jump or Call. If a compute operation is specified with the Else, it is per-
formed in an element when the condition tests false in that element. Note
that a condition must be specified if an Else compute clause is specified.

Note that for the compute, the X element uses the specified registers and
the Y element uses the complementary registers. For a list of complemen-
tary registers, see Table 2-10 on page 2-28.

ADSP-21160 SHARC DSP Instruction Set Reference 4-11

Program Flow Control

The following pseudo code compares the Type 9 instruction’s explicit and
implicit operations in SIMD mode.

Examples

JUMP(M8,I12), R6=R6-1;

IF EQ CALL(PC,17)(DB), ELSE R6=R6-1;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy
COND) JUMP

(Md, Ic) (DB) , (if PEx COND)
compute

;

(PC, <reladdr6>) (LA) , ELSE (if NOT PEx)
compute

(CI)

(DB, LA)

(DB, CI)

IF (PEx AND PEy
COND) CALL

(Md, Ic) (DB) , (if PEx COND)
compute

;

(PC, <reladdr6>) , ELSE (if NOT PEx)
compute

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy
COND) JUMP

(Md, Ic) (DB) , (if PEy COND)
compute

;

(PC, <reladdr6>) (LA) , ELSE (if NOT PEy)
compute

(CI)

(DB, LA)

(DB, CI)

IF (PEx AND PEy
COND) CALL

(Md, Ic) (DB) , (if PEy COND)
compute

;

(PC, <reladdr6>) , ELSE (if NOT PEy)
compute

Do not use the pseudo code above as instruction syntax.

Group II Instructions

4-12 ADSP-21160 SHARC DSP Instruction Set Reference

When the ADSP-21160 processor is in SISD, the indirect jump and com-
pute in the first instruction are performed in parallel. In the second
instruction, a call occurs if the condition is true, otherwise the computa-
tion is performed.

When the ADSP-21160 processor is in SIMD, the indirect jump in the
first instruction occurs in parallel with both processing elements executing
computations. In PEx, R6 stores the result, and S6 stores the result in PEy.
In the second instruction, the condition is evaluated independently on
each processing element, PEx and PEy. The Call executes based on the
logical AND'ing of the PEx and PEy conditional tests. So, the Call exe-
cutes if the condition tests true in both PEx and PEy. Because the Else
inverts the conditional test, the computation is performed independently
on either PEx or PEy based on the negative evaluation of the condition
code seen by that processing element. If the computation is executed, R6
stores the result of the computation in PEx, and S6 stores the result of the
computation in PEy.

For a summary of SISD/SIMD conditional testing, see
“SISD/SIMD Conditional Testing Summary” on page 2-20.

ADSP-21160 SHARC DSP Instruction Set Reference 4-13

Program Flow Control

Type 9 Opcode (with indirect branch)

Type 9 Opcode (with PC-relative branch)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01000 B A COND PMI PMM J E CI

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01001 B A COND RELADDR J E CI

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Group II Instructions

4-14 ADSP-21160 SHARC DSP Instruction Set Reference

Bits Description

COND Specifies the test condition; if omitted, COND is true

 E Specifies whether or not an ELSE clause is used

B Selects the branch type, jump or call. For calls, A and CI are ignored.

J Selects delayed or non-delayed branch

A Activates loop abort

CI Activates clear interrupt

COMPUTE Defines a compute operation to be performed in parallel with the data access; if
omitted, this is a NOP

RELADDR Holds a 6-bit, twos-complement value that is added to the current PC value to
generate the branch address

PMI Specifies the I register for indirect branches. The I register is pre-modified but not
updated by the M register.

PMM Specifies the M register for pre-modifies

ADSP-21160 SHARC DSP Instruction Set Reference 4-15

Program Flow Control

Type 10: Indirect Jump | Compute, dreg«···»DM

Indirect (or PC-relative) jump or optional compute operation with trans-
fer between data memory and register file

Syntax

Function (SISD)

In SISD mode, the Type 10 instruction provides a conditional Jump to
either specified PC-relative address or pre-modified I register value. In
parallel with the Jump, this instruction also provides a transfer between
data memory and a data register with optional parallel compute operation.
For this instruction, the If condition and Else keywords are not optional
and must be used. If the specified condition is true, the Jump is executed.
If the specified condition is false, the data memory transfer and optional
compute operation are performed in parallel. Only the compute operation
is optional in this instruction.

The PC-relative address for the Jump is a 6-bit, twos-complement value.
If an I register is specified (Ic), it is modified by the specified M register
(Md) to generate the branch address. The I register is not affected by the
modify operation. For this Jump, you may not use the delay branch (DB),
loop abort (LA), or clear interrupt (CI) modifiers.

For the data memory access, the I register (Ia) provides the address. The I
register value is post-modified by the specified M register (Mb) and is
updated with the modified value. Pre-modify addressing is not available
for this data memory access.

IF COND Jump (Md, Ic) ,Else compute, DM(Ia, Mb) = dreg ;

(PC, <reladdr6>) compute, dreg = DM(Ia, Mb) ;

Group II Instructions

4-16 ADSP-21160 SHARC DSP Instruction Set Reference

Function (SIMD)

In SIMD mode, the Type 10 instruction provides the same conditional
Jump as is available in SISD mode, but the Jump is executed if the speci-
fied condition tests true in both the X or Y processing elements.

In parallel with the Jump, this instruction also provides a transfer between
data memory and a data register in the X and Y processing elements. An
optional parallel compute operation for the X and Y processing elements is
also available.

For this instruction, the If condition and Else keywords are not optional
and must be used. If the specified condition is true in both processing ele-
ments, the Jump is executed. The the data memory transfer and optional
compute operation specified with the Else are performed in an element
when the condition tests false in that element.

Note that for the compute, the X element uses the specified Dreg register
and the Y element uses the complementary Cdreg register. For a list of
complementary registers, see Table 2-10 on page 2-28. Only the compute
operation is optional in this instruction.

The addressing for the Jump is the same in SISD and SIMD modes, but
addressing for the data memory access differs slightly. For the data mem-
ory access in SIMD mode, X processing element uses the specified I
register (Ia) to address memory. The I register value is post-modified by
the specified M register (Mb) and is updated with the modified value. The
Y element adds one to the specified I register to address memory.
Pre-modify addressing is not available for this data memory access.

ADSP-21160 SHARC DSP Instruction Set Reference 4-17

Program Flow Control

The following pseudo code compares the Type 10 instruction’s explicit
and implicit operations in SIMD mode.

Examples

IF TF JUMP(M8, I8),

ELSE R6=DM(I6, M1);

IF NE JUMP(PC, 0x20),

ELSE F12=FLOAT R10 BY R3, R6=DM(I5, M0);

When the ADSP-21160 processor is in SISD, the indirect jump in the
first instruction is performed if the condition tests true. Otherwise, R6
stores the value of a data memory read. The second instruction is much
like the first, however, it also includes an optional compute, which is per-
formed in parallel with the data memory read.

When the ADSP-21160 processor is in SIMD, the indirect Jump in the
first instruction executes depending on the outcome of the conditional in
both processing element. The condition is evaluated independently on
each processing element, PEx and PEy. The indirect Jump executes based
on the logical AND’ing of the PEx and PEy conditional tests. So, the indi-
rect Jump executes if the condition tests true in both PEx and PEy. The
data memory read is performed independently on either PEx or PEy based
on the negative evaluation of the condition code seen by that PE.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy
COND) Jump

(Md, Ic) ,Else
(if NOT PEx)

compute, DM(Ia, Mb) = dreg ;

(PC, <reladdr6>) compute, dreg = DM(Ia, Mb) ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy
COND) Jump

(Md, Ic) ,Else
(if NOT PEy)

compute, DM(Ia, Mb) = dreg ;

(PC, <reladdr6>) compute, dreg = DM(Ia, Mb) ;

Do not use the pseudo code above as instruction syntax.

Group II Instructions

4-18 ADSP-21160 SHARC DSP Instruction Set Reference

The second instruction is much like the first instruction. The second
instruction, however, includes an optional compute also performed in par-
allel with the data memory read independently on either PEx or PEy and
based on the negative evaluation of the condition code seen by that pro-
cessing element.

For a summary of SISD/SIMD conditional testing, see
“SISD/SIMD Conditional Testing Summary” on page 2-20.

IF TF JUMP(M8,I8), ELSE R6=DM(I1,M1);

When the ADSP-21160 DSP is in broadcast from the BDCST1 bit being set
in the MODE1 system register, the instruction performs an indirect jump if
the condition tests true. Otherwise, R6 stores the value of a data memory
read via the I1 register from DAG1. The S6 register is also loaded with the
same value from data memory as R6.

ADSP-21160 SHARC DSP Instruction Set Reference 4-19

Program Flow Control

Type 10 Opcode (with indirect jump)

Type 10 Opcode (with PC-relative jump)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

110 D DMI DMM COND PMI PMM DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

111 D DMI DMM COND RELADDR DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Bits Description

COND Specifies the condition to test; not optional

PMI Specifies the I register for indirect branches. The I register is premodified, but not
updated by the M register.

PMM Specifies the M register for pre-modifies

D Selects the data memory access Type (read or write)

DREG Specifies the register file location

DMI Specifies the I register that is post-modified and updated by the M register

Group II Instructions

4-20 ADSP-21160 SHARC DSP Instruction Set Reference

DMM Identifies the M register for post-modifies

COMPUTE Defines a compute operation to be performed in parallel with the data access; if
omitted, this is a NOP

RELADDR Holds a 6-bit, twos-complement value that is added to the current PC value to
generate the branch address

Bits Description

ADSP-21160 SHARC DSP Instruction Set Reference 4-21

Program Flow Control

Type 11: Return From Subroutine | Interrupt, Compute

Indirect (or PC-relative) jump or optional compute operation with trans-
fer between data memory and register file

Syntax

Function (SISD)

In SISD mode, the Type 11 instruction provides a return from a subrou-
tine (RTS) or return from an interrupt service routine (RTI). A return
causes the processor to branch to the address stored at the top of the PC
stack. The difference between RTS and RTI is that the RTS instruction
only pops the return address off the PC stack, while the RTI does that
plus:

• Pops status stack if the ASTAT and MODE1 status registers have been
pushed—if the interrupt was IRQ2-0, the timer interrupt, or the
VIRPT vector interrupt

• Clears the appropriate bit in the interrupt latch register (IRPTL)
and the interrupt mask pointer (IMASKP)

The return executes when the optional If condition is true (or if no con-
dition is specified). If a compute operation is specified without the Else, it
is performed in parallel with the return. If a compute operation is specified
with the Else, it is performed only when the If condition is false. Note
that a condition must be specified if an Else compute clause is specified.

IF COND RTS (DB) , compute ;

(LR) , ELSE compute

(DB, LR)

IF COND RTI (DB) , compute ;

, ELSE compute

Group II Instructions

4-22 ADSP-21160 SHARC DSP Instruction Set Reference

RTS supports two modifiers (DB) and (LR); RTI supports one modifier,
(DB). If the delayed branch (DB) modifier is specified, the return is
delayed; otherwise, it is non-delayed.

If the return is not a delayed branch and occurs as one of the last three
instructions of a loop, you must use the loop reentry (LR) modifier with
the subroutine’s RTS instruction. The (LR) modifier assures proper reen-
try into the loop. For example, the DSP checks the termination condition
in counter-based loops by decrementing the current loop counter (CURL-
CNTR) during execution of the instruction two locations before the end of
the loop. In this case, the RTS (LR) instruction prevents the loop counter
from being decremented again, avoiding the error of decrementing twice
for the same loop iteration.

You must also use the (LR) modifier for RTS when returning from a sub-
routine that has been reduced from an interrupt service routine with a
Jump (CI) instruction. This case occurs when the interrupt occurs during
the last two instructions of a loop. For a description of the Jump (CI)
instruction, see “Type 8: Direct Jump | Call” on page 4-3 or “Type 9:
Indirect Jump | Call, Compute” on page 4-8.

Function (SIMD)

In SIMD mode, the Type 11 instruction provides the same return opera-
tions as are available in SISD mode, except that the return is executed if
the specified condition tests true in both the X and Y processing
elements.

In parallel with the return, this instruction also provides a parallel compute
or Else compute operation for the X and Y processing elements. If a condi-
tion is specified, the optional compute is executed in a processing element
if the specified condition tests true in that processing element. If a com-
pute operation is specified with the Else, it is performed in an element
when the condition tests false in that element.

ADSP-21160 SHARC DSP Instruction Set Reference 4-23

Program Flow Control

Note that for the compute, the X element uses the specified registers, and
the Y element uses the complementary registers. For a list of complemen-
tary registers, see Table 2-10 on page 2-28.

The following pseudo code compares the Type 11 instruction’s explicit
and implicit operations in SIMD mode.

Examples

RTI, R6=R5 XOR R1;

IF le RTS(DB);

IF sz RTS, ELSE R0=LSHIFT R1 BY R15;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy COND) RTS (DB) , (if PEx COND) compute ;

(LR) , ELSE (if NOT PEx) compute

(DB, LR)

IF (PEx AND PEy COND) RTI (DB) , (if PEx COND) compute ;

, ELSE (if NOT PEx) compute

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy COND) RTS (DB) , (if PEy COND) compute ;

(LR) , ELSE (if NOT PEy) compute

(DB, LR)

IF (PEx AND PEy COND) RTI (DB) , (if PEy COND) compute ;

, ELSE (if NOT PEy) compute

Do not use the pseudo code above as instruction syntax.

Group II Instructions

4-24 ADSP-21160 SHARC DSP Instruction Set Reference

When the ADSP-21160 processor is in SISD, the first instruction per-
forms a return from interrupt and a computation in parallel. The second
instruction performs a return from subroutine only if the condition is
true. In the third instruction, a return from subroutine is executed if the
condition is true. Otherwise, the computation executes.

When the ADSP-21160 processor is in SIMD, the first instruction per-
forms a return from interrupt and both processing elements execute the
computation in parallel. The result from PEx is placed in R6, and the
result from PEy is placed in S6. The second instruction performs a return
from subroutine (RTS) if the condition tests true in both PEx or PEy. In
the third instruction, the condition is evaluated independently on each
processing element, PEx and PEy. The RTS executes based on the logical
AND'ing of the PEx and PEy conditional tests. So, the RTS executes if
the condition tests true in both PEx and PEy. Because the Else inverts the
conditional test, the computation is performed independently on either
PEx or PEy based on the negative evaluation of the condition code seen by
that processing element. The R0 register stores the result in PEx, and S0
stores the result in PEy if the computations are executed.

For a summary of SISD/SIMD conditional testing, see
“SISD/SIMD Conditional Testing Summary” on page 2-20.

ADSP-21160 SHARC DSP Instruction Set Reference 4-25

Program Flow Control

Type 11 Opcode (return from subroutine)

Type 11 Opcode (return from interrupt)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01010 COND J E L
R

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01011 COND J E

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Bits Description

COND Specifies the test condition; if omitted, COND is true

 J Determines whether the return is delayed or non-delayed

E Specifies whether an ELSE clause is used

COMPUTE Defines the compute operation to be performed; if omitted, this is a NOP

LR Specifies whether or not the loop reentry modifier is specified

Group II Instructions

4-26 ADSP-21160 SHARC DSP Instruction Set Reference

Type 12: Do Until Counter Expired

Load loop counter, do loop until loop counter expired

Syntax

Function (SISD and SIMD)

In SISD or SIMD modes, the Type 12 instruction sets up a counter-based
program loop. The loop counter LCNTR is loaded with 16-bit immediate
data or from a universal register. The loop start address is pushed on the
PC stack. The loop end address and the LCE termination condition are
pushed on the loop address stack. The end address can be either a label for
an absolute 24-bit program memory address, or a PC-relative 24-bit
twos-complement address. The LCNTR is pushed on the loop counter stack
and becomes the CURLCNTR value. The loop executes until the CURLCNTR
reaches zero.

Examples

LCNTR=100, DO fmax UNTIL LCE; {fmax is a program label}

LCNTR=R12, DO (PC,16) UNTIL LCE;

The ADSP-21160 processor (in SISD or SIMD) executes the action at the
indicated address for the duration of the loop.

LCNTR = <data16> , DO <addr24> UNTIL LCE;

ureg (PC, <reladdr24>)

ADSP-21160 SHARC DSP Instruction Set Reference 4-27

Program Flow Control

Type 12 Opcode (with immediate loop counter load)

Type 12 Opcode (with loop counter load from a Ureg)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01100 DATA

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01101 0 UREG

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

Bits Description

RELADDR Specifies the end-of-loop address relative to the DO LOOP instruction address.
The Assembler also accepts an absolute address and converts the absolute address
to the equivalent relative address for coding.

DATA Specifies a 16-bit value to load into the loop counter (LCNTR) for an immediate
load.

UREG Specifies a register containing a 16-bit value to load into the loop counter
(LCNTR) for a load from an universal register.

Group II Instructions

4-28 ADSP-21160 SHARC DSP Instruction Set Reference

Type 13: Do Until

Do until termination

Syntax

Function (SISD)

In SISD mode, the Type 13 instruction sets up a conditional program
loop. The loop start address is pushed on the PC stack. The loop end
address and the termination condition are pushed on the loop stack. The
end address can be either a label for an absolute 24-bit program memory
address or a PC-relative, 24-bit twos-complement address. The loop exe-
cutes until the termination condition tests true.

Function (SIMD)

In SIMD mode, the Type 13 instruction provides the same conditional
program loop as is available in SISD mode, except that in SIMD mode the
loop executes until the termination condition tests true in both the X and
Y processing elements.

DO <addr24> UNTIL termination ;

(PC, <reladdr24>)

ADSP-21160 SHARC DSP Instruction Set Reference 4-29

Program Flow Control

The following pseudo code compares the Type 13 instruction’s explicit
and implicit operations in SIMD mode.

Examples

DO end UNTIL FLAG1_IN; {end is a program label}

DO (PC,7) UNTIL AC;

When the ADSP-21160 processor is in SISD, the end program label in the
first instruction specifies the start address for the loop, and the loop is exe-
cuted until the instruction’s condition tests true. In the second
instruction, the start address is given in the form of a PC-relative address.
The loop executes until the instruction’s condition tests true.

When the ADSP-21160 processor is in SIMD, the end program label in
the first instruction specifies the start address for the loop, and the loop is
executed until the instruction’s condition tests true in both PEx or PEy. In
the second instruction, the start address is given in the form of a PC-rela-
tive address. The loop executes until the instruction’s condition tests true
in both PEx or PEy.

SIMD Explicit Operation (Program Sequencer Operation Stated in the Instruction Syntax

DO <addr24> UNTIL (PEx AND PEy) termination ;

(PC, <reladdr24>)

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

{No explicit PEx operation}

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

{No implicit PEy operation}

Do not use the pseudo code above as instruction syntax.

Group II Instructions

4-30 ADSP-21160 SHARC DSP Instruction Set Reference

Type 13 Opcode (relative addressing)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01110 TERM

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

Bits Description

RELADDR Specifies the end-of-loop address relative to the Do Loop instruction address. The
Assembler accepts an absolute address as well and converts the absolute address to
the equivalent relative address for coding.

TERM Specifies the termination condition.

5-1 ADSP-21160 SHARC DSP Instruction Set Reference

5 IMMEDIATE MOVE

The immediate move instructions in the Group III set of instructions
specify a register-to-memory data moves.

Group III Instructions
Group III instructions include the following.

• “Type 14: Ureg«···»DM | PM (direct addressing)” on page 5-2

Transfer between data or program memory and universal register,
direct addressing, immediate address

• “Type 15: Ureg«···»DM | PM (indirect addressing)” on page 5-5

Transfer between data or program memory and universal register,
indirect addressing, immediate modifier

• “Type 16: Immediate data···»DM | PM” on page 5-9

Immediate data write to data or program memory

• “Type 17: Immediate data···»Ureg” on page 5-12

Immediate data write to universal register

Type 14: Ureg«···»DM | PM (direct addressing)

5-2 ADSP-21160 SHARC DSP Instruction Set Reference

Type 14: Ureg«···»DM | PM (direct addressing)

Transfer between data or program memory and universal register, direct
addressing, immediate address

Syntax

Function (SISD)

In SISD mode, the Type 14 instruction sets up an access between data or
program memory and a universal register, with direct addressing. The
entire data or program memory address is specified in the instruction.
Addresses are 32 bits wide (0 to 232–1). The optional (LW) in this syntax
lets you specify Long Word addressing, overriding default addressing
from the memory map.

Function (SIMD)

In SIMD mode, the Type 14 instruction provides the same access between
data or program memory and a universal register, with direct addressing,
as is available in SISD mode, except that addressing differs slightly, and
the transfer occurs in parallel for the X and Y processing elements.

For the memory access in SIMD mode, the X processing element uses the
specified 32-bit address to address memory. The Y element adds one to
the specified 32-bit address to address memory.

DM(<addr32>)
PM(<addr32>)

= ureg (LW);

ureg = DM(<addr32>) (LW);

PM(<addr32>) (LW);

ADSP-21160 SHARC DSP Instruction Set Reference 5-3

Immediate Move

For the universal register, the X element uses the specified Ureg, and the Y
element uses the complementary register (Cureg) that corresponds to the
Ureg register specified in the instruction. For a list of complementary reg-
isters, see Table 2-10 on page 2-28. Note that only the Cureg subset
registers which have complimentary registers are effected by SIMD mode.

The following pseudo code compares the Type 14 instruction’s explicit
and implicit operations in SIMD mode.

Examples

DM(temp)=MODE1; {temp is a program label}

WAIT=PM(0x489060);

When the ADSP-21160 processor is in SISD, the first instruction per-
forms a direct memory write of the value in the MODE1 register into data
memory with the data memory destination address specified by the pro-
gram label, temp. The second instruction initializes the WAIT register with
the value found in the specified address in program memory.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(<addr32>)
PM(<addr32>)

= ureg (LW);

ureg = DM(<addr32>) (LW);

PM(<addr32>) (LW);

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(<addr32>+1)
PM(<addr32>+1)

= cureg (LW);

cureg = DM(<addr32>+1) (LW);

PM(<addr32>+1) (LW);

Do not use the pseudo code above as instruction syntax.

Type 14: Ureg«···»DM | PM (direct addressing)

5-4 ADSP-21160 SHARC DSP Instruction Set Reference

Because of the register selections in this example, these two instructions
operate the same in SIMD and SISD mode. The MODE1 (SYSCON) and WAIT
(IOP) registers are not included in the Cureg subset, so they do not oper-
ate differently in SIMD mode.

Type 14 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 100 G D L UREG ADDR
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR
(lower 24 bits)

Bits Description

D Selects the access Type (read or write)

G Selects the memory Type (data or program)

L Forces a long word (LW) access when address is in normal word address range

UREG Specifies the number of a universal register

ADDR Contains the immediate address value

ADSP-21160 SHARC DSP Instruction Set Reference 5-5

Immediate Move

Type 15: Ureg«···»DM | PM (indirect addressing)

Transfer between data or program memory and universal register, indirect
addressing, immediate modifier

Syntax

Function (SISD)

In SISD mode, the Type 15 instruction sets up an access between data or
program memory and a universal register, with indirect addressing using I
registers. The I register is pre-modified with an immediate value specified
in the instruction. The I register is not updated. Address modifiers are 32
bits wide (0 to 232–1). The Ureg may not be from the same DAG (that is,
DAG1 or DAG2) as Ia/Mb or Ic/Md. For more information on register
restrictions, see the “Data Address Generators” chapter of the
ADSP-21160 SHARC DSP Hardware Reference. The optional (LW) in this
syntax lets you specify Long Word addressing, overriding default address-
ing from the memory map.

Function (SIMD)

In SIMD mode, the Type 15 instruction provides the same access between
data or program memory and a universal register, with indirect addressing
using I registers, as is available in SISD mode, except that addressing dif-
fers slightly, and the transfer occurs in parallel for the X and Y processing
elements.

DM(<data32>, Ia)
PM(<data32>, Ic)

= ureg (LW);

ureg = DM(<data32>, Ia) (LW);

PM(<data32>, Ic)

Type 15: Ureg«···»DM | PM (indirect addressing)

5-6 ADSP-21160 SHARC DSP Instruction Set Reference

The X processing element uses the specified I register—pre-modified with
an immediate value—to address memory. The Y processing element adds
one to the pre-modified I value to address memory. The I register is not
updated.

The Ureg specified in the instruction is used for the X processing element
transfer and may not be from the same DAG (that is, DAG1 or DAG2) as
Ia/Mb or Ic/Md. The Y element uses the complementary register (Cureg)
that correspond to the Ureg register specified in the instruction. For a list
of complementary registers, see Table 2-10 on page 2-28. Note that only
the Cureg subset registers which have complimentary registers are effected
by SIMD mode. For more information on register restrictions, see the
“Data Address Generators” chapter of the ADSP-21160 SHARC DSP
Hardware Reference.

The following pseudo code compares the Type 15 instruction’s explicit
and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(<data32>, Ia)
PM(<data32>, Ic)

= ureg (LW);

ureg = DM(<data32>, Ia) (LW);

PM(<data32>, Ic)

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(<data32>+1, Ia)
PM(<data32>+1, Ic)

= cureg (LW);

cureg = DM(<data32>+1, Ia) (LW);

PM(<data32>+1, Ic)

Do not use the pseudo code above as instruction syntax.

ADSP-21160 SHARC DSP Instruction Set Reference 5-7

Immediate Move

Examples

DM(24,I5)=TCOUNT;

USTAT1=PM(offs,I13); {"offs" is a user-defined constant}

When the ADSP-21160 processor is in SISD, the first instruction per-
forms a data memory write, using indirect addressing and the Ureg timer
register, TCOUNT. The DAG1 register I5 is pre-modified with the immedi-
ate value of 24. The I5 register is not updated after the memory access
occurs. The second instruction performs a program memory read, using
indirect addressing and the system register, USTAT1. The DAG2 register
I13 is pre-modified with the immediate value of the defined constant,
offs. The I13 register is not updated after the memory access occurs.

Because of the register selections in this example, the first instruction in
this example operates the same in SIMD and SISD mode. The TCOUNT
(timer) register is not included in the Cureg subset, and therefore the first
instruction operates the same in SIMD and SISD mode.

The second instruction operates differently in SIMD. The USTAT1 (sys-
tem) register is included in the Cureg subset. Therefore, a program
memory read—using indirect addressing and the system register, USTAT1
and its complimentary register USTAT2—is performed in parallel on PEx
and PEy respectively. The DAG2 register I13 is pre-modified with the
immediate value of the defined constant, offs, to address memory on
PEx. This same pre-modified value in I13 is skewed by 1 to address mem-
ory on PEy. The I13 register is not updated after the memory access
occurs in SIMD mode.

Type 15: Ureg«···»DM | PM (indirect addressing)

5-8 ADSP-21160 SHARC DSP Instruction Set Reference

Type 15 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

101 G I D L UREG DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

Bits Description

D Selects the access Type (read or write)

G Selects the memory Type (data or program)

L Forces a long word (LW) access when address is in normal word address range

UREG Specifies the number of a universal register

DATA Specifies the immediate modify value for the I register

ADSP-21160 SHARC DSP Instruction Set Reference 5-9

Immediate Move

Type 16: Immediate data···»DM | PM

Immediate data write to data or program memory

Syntax

Function (SISD)

In SISD mode, the Type 16 instruction sets up a write of 32-bit immedi-
ate data to data or program memory, with indirect addressing. The data is
placed in the most significant 32 bits of the 40-bit memory word. The
least significant 8 bits are loaded with 0s. The I register is post-modified
and updated by the specified M register.

Function (SIMD)

In SIMD mode, the Type 16 instruction provides the same write of 32-bit
immediate data to data or program memory, with indirect addressing, as is
available in SISD mode, except that addressing differs slightly, and the
transfer occurs in parallel for the X and Y processing elements.

The X processing element uses the specified I register to address memory.
The Y processing element adds one to the I register to address memory.
The I register is post-modified and updated by the specified M register.

DM(Ia, Mb)
PM(Ic, Md)

= <data32> ;

Type 16: Immediate data···»DM | PM

5-10 ADSP-21160 SHARC DSP Instruction Set Reference

The following pseudo code compares the Type 16 instruction’s explicit
and implicit operations in SIMD mode.

Examples

DM(I4,M0)=19304;

PM(I14,M11)=count; {count is user-defined constant}

When the ADSP-21160 processor is in SISD, the two immediate memory
writes are performed on PEx. The first instruction writes to data memory
and the second instruction writes to program memory. DAG1 and DAG2
are used to indirectly address the locations in memory to which values are
written. The I4 and I14 registers are post-modified and updated by M0 and
M11 respectively.

When the ADSP-21160 processor is in SIMD, the two immediate mem-
ory writes are performed in parallel on PEx and PEy. The first instruction
writes to data memory and the second instruction writes to program mem-
ory. DAG1 and DAG2 are used to indirectly address the locations in
memory to which values are written. The I4 and I14 registers are
post-modified and updated by M0 and M11 respectively.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(Ia, Mb) = <data32> ;

PM(Ic, Md)

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(Ia+1, 0)
PM(Ic+1, 0)

= <data32> ;

Do not use the pseudo code above as instruction syntax.

ADSP-21160 SHARC DSP Instruction Set Reference 5-11

Immediate Move

Type 16 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

100 1 I M G DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

Bits Description

I Selects the I register

M Selects the M register

G Selects the memory (data or program)

DATA Specifies the 32-bit immediate data

Type 17: Immediate data···»Ureg

5-12 ADSP-21160 SHARC DSP Instruction Set Reference

Type 17: Immediate data···»Ureg

Immediate data write to universal register

Syntax

Function (SISD)

In SISD mode, the Type 17 instruction writes 32-bit immediate data to a
universal register. If the register is 40 bits wide, the data is placed in the
most significant 32 bits, and the least significant 8 bits are loaded with 0s.

Function (SIMD)

In SIMD mode, the Type 17 instruction provides the same write of 32-bit
immediate data to universal register as is available in SISD mode, but pro-
vides parallel writes for the X and Y processing elements.

The X element uses the specified Ureg, and the Y element uses the com-
plementary Cureg. Note that only the Cureg subset registers which have
complimentary registers are effected by SIMD mode. For a list of comple-
mentary registers, see Table 2-10 on page 2-28.

The following pseudo code compares the Type 17 instruction’s explicit
and implicit operations in SIMD mode.

ureg = <data32> ;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

ureg = <data32> ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

cureg = <data32> ;

Do not use the pseudo code above as instruction syntax.

ADSP-21160 SHARC DSP Instruction Set Reference 5-13

Immediate Move

Examples

ASTATx=0x0;

M15=mod1; {mod1 is user-defined constant}

When the ADSP-21160 processor is in SISD, the two instructions load
immediate values into the specified registers.

Because of the register selections in this example, the second instruction in
this example operates the same in SIMD and SISD mode. The ASTATx
(system) register is included in the Cureg subset. In the first instruction,
the immediate data write to the system register ASTATx and its complimen-
tary register ASTATy are performed in parallel on PEx and PEy respectively.
In the second instruction, the M15 register is not included in the Cureg
subset. So, the second instruction operates the same in SIMD and SISD
mode.

Type 17 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01111 0 UREG DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

Bits Description

UREG Specifies the number of a universal register.

DATA Specifies the immediate modify value for the I register.

Group III Instructions

5-14 ADSP-21160 SHARC DSP Instruction Set Reference

Instruction Set Reference 6-1
for ADSP-21160 SHARC DSPs

6 MISCELLANEOUS
OPERATIONS

The miscellaneous operation instructions in the Group IV set of instruc-
tions specify system operations.

Group IV Instructions
Group IV instructions include the following.

• “Type 18: System Register Bit Manipulation” on page 6-2

System register bit manipulation

• “Type 19: I Register Modify | Bit-Reverse” on page 6-5

Immediate I register modify, with or without bit-reverse

• “Type 20: Push, Pop Stacks, Flush Cache” on page 6-8

Push or Pop of loop and/or status stacks

• “Type 21: Nop” on page 6-10

No Operation (NOP)

• “Type 22: Idle” on page 6-11

Idle

• “Type 25: Cjump/Rframe” on page 6-12

CJUMP/RFRAME (Compiler-generated instruction)

Type 18: System Register Bit Manipulation

6-2 Instruction Set Reference
for ADSP-21160 SHARC DSPs

Type 18: System Register Bit Manipulation

System register bit manipulation

Syntax

Function (SISD)

In SISD mode, the Type 18 instruction provides a bit manipulation oper-
ation on a system register. This instruction can set, clear, toggle or test
specified bits, or compare (XOR) the system register with a specified data
value. In the first four operations, the immediate data value is a mask.

The set operation sets all the bits in the specified system register that are
also set in the specified data value. The clear operation clears all the bits
that are set in the data value. The toggle operation toggles all the bits that
are set in the data value. The test operation sets the bit test flag (BTF in
ASTATx/y) if all the bits that are set in the data value are also set in the sys-
tem register. The XOR operation sets the bit test flag (BTF in ASTATx/y) if
the system register value is the same as the data value.

For more information on shifter operations, see “Computations Refer-
ence” on page 7-1. For more information on system registers, see the
“Registers” appendix of the ADSP-21160 SHARC DSP Hardware
Reference.

BIT SET sreg <data32> ;

CLR

TGL

TST

XOR

Instruction Set Reference 6-3
for ADSP-21160 SHARC DSPs

Miscellaneous Operations

Function (SIMD)

In SIMD mode, the Type 18 instruction provides the same bit manipula-
tion operations as are available in SISD mode, but provides them in
parallel for the X and Y processing elements.

The X element operation uses the specified Sreg, and the Y element opera-
tions uses the complementary Csreg. For a list of complementary registers,
see Table 2-10 on page 2-28.

The following pseudo code compares the Type 18 instruction’s explicit
and implicit operations in SIMD mode.

Examples

BIT SET MODE2 0x00000070;

BIT TST ASTATx 0x00002000;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

BIT SET sreg <data32> ;

CLR

TGL

TST

XOR

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

BIT SET csreg <data32> ;

CLR

TGL

TST

XOR

Do not use the pseudo code above as instruction syntax.

Type 18: System Register Bit Manipulation

6-4 Instruction Set Reference
for ADSP-21160 SHARC DSPs

When the ADSP-21160 processor is in SISD, the first instruction sets all
of the bits in the MODE2 register that are also set in the data value, bits 4, 5,
and 6 in this case. The second instruction sets the bit test flag (BTF in
ASTATx) if all the bits set in the data value, just bit 13 in this case, are also
set in the system register.

Because of the register selections in this example, the first instruction
operates the same in SISD and SIMD, but the second instruction operates
differently in SIMD. Only the Cureg subset registers which have compli-
mentary registers are affected in SIMD mode. The ASTATx (system)
register is included in the Cureg subset, so the bit test operations are per-
formed independently on each processing element in parallel using these
complimentary registers. The BTF is set on both PE’s (ASTATx and ASTATy),
either one PE (ASTATx or ASTATy), or neither PE dependent on the out-
come of the bit test operation.

Type 18 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10100 BOP SREG DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

Bits Description

BOP Selects one of the five bit operations.

SREG Specifies the system register.

DATA Specifies the data value.

Instruction Set Reference 6-5
for ADSP-21160 SHARC DSPs

Miscellaneous Operations

Type 19: I Register Modify | Bit-Reverse

Immediate I register modify, with or without bit-reverse

Syntax

Function (SISD & SIMD)

In SISD and SIMD modes, the Type 19 instruction modifies and updates
the specified I register by an immediate 32-bit data value. If the address is
to be bit-reversed, you must specify a DAG1 Ia register (I0–I7) or DAG2
Ic register (I8–I15), and the modified value is bit-reversed before being
written back to the I register. No address is output in either case. For more
information on register restrictions, see the “Data Address Generators”
chapter of the ADSP-21160 SHARC DSP Hardware Reference.

If the DAG’s Lx and Bx registers that correspond to Ia or Ic are set
up for circular bufferring, the Modify operation always executes
circular buffer wrap around, independent of the state of the CBUFEN
bit.

Examples

MODIFY (I4,304);

BITREV (I7,space); {space is a user-defined constant}

MODIFY (Ia, <data32>) ;

(Ic, <data32>)

BITREV (Ia, <data32>) ;

(Ic, <data32>)

Type 19: I Register Modify | Bit-Reverse

6-6 Instruction Set Reference
for ADSP-21160 SHARC DSPs

In SISD and SIMD, the first instruction modifies and updates the I4 reg-
ister by the immediate value of 304. The second instruction utilizes the
DAG1 register I7. The value originally stored in I7 is modified by the
defined constant, space, and is then bit-reversed before being written back
to the I7 register.

Type 19 Opcode (without bit-reverse)

Type 19 Opcode (with bit-reverse)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10110 0 G I DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10110 1 G I DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

Instruction Set Reference 6-7
for ADSP-21160 SHARC DSPs

Miscellaneous Operations

Bits Description

G Selects the data address generator:
G=0 for DAG1
G=1 for DAG2

 I Selects the I register:
I=0–7 for I0–I7 (for DAG1)
I=0–7 for I8–I15 (for DAG2)

DATA Specifies the immediate modifier.

Type 20: Push, Pop Stacks, Flush Cache

6-8 Instruction Set Reference
for ADSP-21160 SHARC DSPs

Type 20: Push, Pop Stacks, Flush Cache

Push or Pop of loop and/or status stacks

Syntax

Function (SISD and SIMD)

In SISD and SIMD modes, the Type 20 instruction pushes or pops the
loop address and loop counter stacks, the status stack, and/or the PC
stack, and/or clear the instruction cache. Any of set of Pushes (Push Loop,
Push Sts, Push Pcstk) or Pops (Pop Loop, Pop Sts, Pop Pcstk) may be
combined in a single instruction, but a Push may not be combined with a
Pop.

Flushing the instruction cache invalidates all entries in the cache, with no
latency—the cache is cleared at the end of the cycle.

Examples

PUSH LOOP, PUSH STS;

POP PCSTK, FLUSH CACHE;

In SISD and SIMD, the first instruction pushes the loop stack and status
stack. The second instruction pops the PC stack and flushes the cache.

PUSH LOOP , PUSH STS , PUSH PCSTK , FLUSH CACHE ;

POP POP POP

Instruction Set Reference 6-9
for ADSP-21160 SHARC DSPs

Miscellaneous Operations

Type 20 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10111
L
P
U

L
P
O

S
P
U

S
P
O

P
P
U

P
P
O

F
C

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Description

LPU Pushes the loop stacks

LPO Pops the loop stacks

SPU Pushes the status stack

SPO Pops the status stack

PPU Pushes the PC stack

PPO Pops the PC stack

FC Causes a cache flush

Type 21: Nop

6-10 Instruction Set Reference
for ADSP-21160 SHARC DSPs

Type 21: Nop

No Operation (NOP)

Syntax

Function (SISD and SIMD)

In SISD and SIMD modes, the Type 21 instruction provides a null opera-
tion; it increments only the fetch address.

Type 21 Opcode

NOP ;

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00000 0

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction Set Reference 6-11
for ADSP-21160 SHARC DSPs

Miscellaneous Operations

Type 22: Idle

Idle

Syntax

Function (SISD and SIMD)

In SISD and SIMD modes, the Type 22 instruction executes a Nop and
puts the processor in a low power state. The processor remains in the low
power state until an interrupt occurs. On return from the interrupt, exe-
cution continues at the instruction following the Idle instruction.

Type 22 Opcode

IDLE ;

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00000 1

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Type 25: Cjump/Rframe

6-12 Instruction Set Reference
for ADSP-21160 SHARC DSPs

Type 25: Cjump/Rframe

Cjump/Rframe (Compiler-generated instruction)

Syntax

Function (SISD and SIMD)

In SISD mode, the Type 25 instruction (Cjump) combines a direct or
PC-relative jump with register transfer operations that save the frame and
stack pointers. The instruction (Rframe) also reverses the register transfers
to restore the frame and stack pointers.

The Type 25 instruction is only intended for use by a C (or other
high-level-language) compiler. Do not use Cjump or Rframe in your
assembly programs.

The different forms of this instruction perform the operations listed in
Table 6-1.

CJUMP function (DB) ;

(PC, <reladdr24>)

RFRAME ;

Table 6-1. Operations Done by Forms of the Type 25 Instruction

Compiler-Generated

Instruction1

1 In this table, raddr indicates a relative 24-bit address.

Operations Performed in
SISD Mode

Operations Performed in
SIMD Mode

CJUMP label (DB); JUMP label (DB),
 R2=I6, I6=I7;

JUMP label (DB),
 R2=I6, S2=I6, I6=I7;

CJUMP (PC,raddr)(DB); JUMP (PC,raddr) (DB),
 R2=I6, I6=I7;

JUMP (PC,raddr) (DB),
 R2=I6, S2=I6, I6=I7;

RFRAME; I7=I6, I6=DM(0,I6); I7=I6, I6=DM(0,I6),
 I6=DM(1,I6);

Instruction Set Reference 6-13
for ADSP-21160 SHARC DSPs

Miscellaneous Operations

Type 25a Opcode (with direct branch)

Type 25b Opcode (with PC-relative branch)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

0001 1000 0000 0100 0000 0000

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

0001 1000 0100 0100 0000 0000

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

Bits Description

ADDR Specifies a 24-bit program memory address for “function”

RELADDR Specifies a 24-bit, twos-complement value added to the current PC value to gener-
ate the branch address

Type 25: Cjump/Rframe

6-14 Instruction Set Reference
for ADSP-21160 SHARC DSPs

Type 25c Opcode (RFRAME)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

0001 1001 0000 0000 0000 0000

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000 0000 0000 0000 0000 0000

ADSP-21160 SHARC DSP Instruction Set Reference 7-1

7 COMPUTATIONS REFERENCE

This chapter describes each compute operation in detail, including its
assembly language syntax and opcode field. Compute operations execute
in the multiplier, the ALU, and the shifter.

Compute Field
The 23-bit compute field is a mini instruction within the ADSP-21000
instruction. You can specify a value in this field for a variety of compute
operations, which include the following.

• Single-function operations involve a single computation unit.

• Multifunction operations specify parallel operation of the multi-
plier and the ALU or two operations in the ALU.

• The MR register transfer is a special type of compute operation used
to access the fixed-point accumulator in the multiplier.

For each operation, the assembly language syntax, the function, and the
opcode format and contents are specified. For an explanation of the nota-
tion and abbreviations, see Chapter 2, “Instruction Summary.”

Compute Field

7-2 ADSP-21160 SHARC DSP Instruction Set Reference

In single-function operations, the compute field of a single-function oper-
ation is made up of the following bit fields.

The compute operation (Opcode) is executed in the computation unit (CU).
The x operand and y operand are input from data registers (Rx and Ry).
The compute result goes to a data register (Rn). Note that in some shifter
operations, the result register (Rn) serves as a result destination and as
source for a third input operand.

The available compute operations (Opcode) appear in Table 7-1 on
page 7-4, Table 7-2 on page 7-5, Table 7-3 on page 7-53, Table 7-4 on
page 7-54, and Table 7-8 on page 7-65. These tables are organized by
computation unit: “ALU Operations” on page 7-3, “Multiplier Opera-
tions” on page 7-51, and “Shifter Operations” on page 7-64. Following
each table, each compute operation is described in detail.

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CU Opcode Rn Rx Ry

Bits Description

CU Specifies the computation unit for the compute operation, where: 00=ALU,
01=Multiplier, and 10=Shifter

Opcode Specifies the compute operation

Rn Specifies register for the compute result

Rx Specifies register for the compute’s x operand

Ry Specifies register for the compute’s y operand

ADSP-21160 SHARC DSP Instruction Set Reference 7-3

Computations Reference

ALU Operations
This section describes the ALU operations. Table 7-1 and Table 7-2 on
page 7-5 summarize the syntax and opcodes for the fixed-point and float-
ing-point ALU operations, respectively.

ALU Operations

7-4 ADSP-21160 SHARC DSP Instruction Set Reference

Fixed-Point ALU Operations

Table 7-1. Fixed-Point ALU Operations

Syntax Opcode Reference page

Rn = Rx + Ry 0000 0001 on page 7-7

Rn = Rx – Ry 0000 0010 on page 7-8

Rn = Rx + Ry + CI 0000 0101 on page 7-9

Rn = Rx – Ry + CI – 1 0000 0110 on page 7-10

Rn = (Rx + Ry)/2 0000 1001 on page 7-11

COMP(Rx, Ry) 0000 1010 on page 7-12

COMPU(Rx, Ry) 0000 1011 on page 7-13

Rn = Rx + CI 0010 0101 on page 7-14

Rn = Rx + CI – 1 0010 0110 on page 7-15

Rn = Rx + 1 0010 1001 on page 7-16

Rn = Rx – 1 0010 1010 on page 7-17

Rn = – Rx 0010 0010 on page 7-18

Rn = ABS Rx 0011 0000 on page 7-19

Rn = PASS Rx 0010 0001 on page 7-20

Rn = Rx AND Ry 0100 0000 on page 7-21

Rn = Rx OR Ry 0100 0001 on page 7-22

Rn = Rx XOR Ry 0100 0010 on page 7-23

Rn = NOT Rx 0100 0011 on page 7-24

Rn = MIN(Rx, Ry) 0110 0001 on page 7-25

Rn = MAX(Rx, Ry) 0110 0010 on page 7-26

Rn = CLIP Rx BY Ry 0110 0011 on page 7-27

ADSP-21160 SHARC DSP Instruction Set Reference 7-5

Computations Reference

ALU Floating-Point Operations

Table 7-2. Floating-Point ALU Operations

Syntax Opcode Reference page

Fn = Fx + Fy 1000 0001 on page 7-28

Fn = Fx – Fy 1000 0010 on page 7-29

Fn = ABS (Fx + Fy) 1001 0001 on page 7-30

Fn = ABS (Fx – Fy) 1001 0010 on page 7-31

Fn = (Fx + Fy)/2 1000 1001 on page 7-32

Fn = COMP(Fx, Fy) 1000 1010 on page 7-33

Fn = –Fx 1010 0010 on page 7-34

Fn = ABS Fx 1011 0000 on page 7-35

Fn = PASS Fx 1010 0001 on page 7-36

Fn = RND Fx 1010 0101 on page 7-37

Fn = SCALB Fx BY Ry 1011 1101 on page 7-38

Rn = MANT Fx 1010 1101 on page 7-39

Rn = LOGB Fx 1100 0001 on page 7-40

Rn = FIX Fx BY Ry 1101 1001 on page 7-41

Rn = FIX Fx 1100 1001 on page 7-41

Rn = TRUNC Fx BY Ry 1101 1101 on page 7-41

Rn = TRUNC Fx 1100 1101 on page 7-41

Fn = FLOAT Rx BY Ry 1101 1010 on page 7-43

Fn = FLOAT Rx 1100 1010 on page 7-43

Fn = RECIPS Fx 1100 0100 on page 7-44

Fn = RSQRTS Fx 1100 0101 on page 7-46

Fn = Fx COPYSIGN Fy 1110 0000 on page 7-48

Fn = MIN(Fx, Fy) 1110 0001 on page 7-49

ALU Operations

7-6 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = MAX(Fx, Fy) 1110 0010 on page 7-50

Fn = CLIP Fx BY Fy 1110 0011 on page 7-51

Table 7-2. Floating-Point ALU Operations (Cont’d)

Syntax Opcode Reference page

ADSP-21160 SHARC DSP Instruction Set Reference 7-7

Computations Reference

Rn = Rx + Ry

Function

Adds the fixed-point fields in registers Rx and Ry. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in
Rn is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set) positive overflows return the maximum positive number
(0x7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ALU Operations

7-8 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = Rx – Ry

Function

Subtracts the fixed-point field in register Ry from the fixed-point field in
register Rx. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all 0s. In saturation mode (the
ALU saturation mode bit in MODE1 set) positive overflows return the maxi-
mum positive number (0x7FFF FFFF), and negative overflows return the
minimum negative number (0x8000 0000).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-9

Computations Reference

Rn = Rx + Ry + CI

Function

Adds with carry (AC from ASTAT) the fixed-point fields in registers Rx and
Ry. The result is placed in the fixed-point field in register Rn. The float-
ing-point extension field in Rn is set to all 0s. In saturation mode (the
ALU saturation mode bit in MODE1 set) positive overflows return the maxi-
mum positive number (0x7FFF FFFF), and negative overflows return the
minimum negative number (0x8000 0000).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ALU Operations

7-10 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = Rx – Ry + CI – 1

Function

Subtracts with borrow (AC – 1 from ASTAT) the fixed-point field in register
Ry from the fixed-point field in register Rx. The result is placed in the
fixed-point field in register Rn. The floating-point extension field in Rn is
set to all 0s. In saturation mode (the ALU saturation mode bit in MODE1
set) positive overflows return the maximum positive number
(0x7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-11

Computations Reference

Rn = (Rx + Ry)/2

Function

Adds the fixed-point fields in registers Rx and Ry and divides the result by
2. The result is placed in the fixed-point field in register Rn. The float-
ing-point extension field in Rn is set to all 0s. Rounding is to nearest
(IEEE) or by truncation, as defined by the rounding mode bit in the MODE1
register.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ALU Operations

7-12 ADSP-21160 SHARC DSP Instruction Set Reference

COMP(Rx, Ry)

Function

Compares the fixed-point field in register Rx with the fixed-point field in
register Ry. Sets the AZ flag if the two operands are equal, and the AN flag if
the operand in register Rx is smaller than the operand in register Ry.

The ASTAT register stores the results of the previous eight ALU compare
operations in bits 24–31. These bits are shifted right (bit 24 is overwrit-
ten) whenever a fixed-point or floating-point compare instruction is
executed. The MSB of ASTAT is set if the X operand is greater than the Y
operand (its value is the AND of AZ and AN); it is otherwise cleared.

Status Flags

AZ Set if the operands in registers Rx and Ry are equal, otherwise cleared

AU Cleared

AN Set if the operand in the Rx register is smaller than the operand in the Ry reg-
ister, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-13

Computations Reference

COMPU(Rx, Ry)

Function

Compares the fixed-point field in register Rx with the fixed-point field in
register Ry, Sets the AZ flag if the two operands are equal, and the AN flag if
the operand in register Rx is smaller than the operand in register Ry. This
operation performs a magnitude comparison of the fixed-point contents of
Rx and Ry.

The ASTAT register stores the results of the previous eight ALU compare
operations in bits 24–31. These bits are shifted right (bit 24 is overwrit-
ten) whenever a fixed-point or floating-point compare instruction is
executed. The MSB of ASTAT is set if the X operand is greater than the Y
operand (its value is the AND of AZ and AN); it is otherwise cleared.

Status Flags

AZ Is set if the operands in registers Rx and Ry are equal, otherwise cleared

AU Is cleared

AN Is set if the operand in the Rx register is smaller than the operand in the Ry
register, otherwise cleared

AV Is cleared

AC Is cleared

AS Is cleared

AI Is cleared

ALU Operations

7-14 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = Rx + CI

Function

Adds the fixed-point field in register Rx with the carry flag from the ASTAT
register (AC). The result is placed in the fixed-point field in register Rn.
The floating-point extension field in Rn is set to all 0s. In saturation mode
(the ALU saturation mode bit in MODE1 set) positive overflows return the
maximum positive number (0x7FFF FFFF).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-15

Computations Reference

Rn = Rx + CI – 1

Function

Adds the fixed-point field in register Rx with the borrow from the ASTAT
register (AC – 1). The result is placed in the fixed-point field in register Rn.
The floating-point extension field in Rn is set to all 0s. In saturation mode
(the ALU saturation mode bit in MODE1 set) positive overflows return the
maximum positive number (0x7FFF FFFF).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ALU Operations

7-16 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = Rx + 1

Function

Increments the fixed-point operand in register Rx. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in
Rn is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set), overflow causes the maximum positive number (0x7FFF FFFF)
to be returned.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder, stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-17

Computations Reference

Rn = Rx – 1

Function

Decrements the fixed-point operand in register Rx. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in
Rn is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set), underflow causes the minimum negative number
(0x8000 0000) to be returned.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ALU Operations

7-18 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = –Rx

Function

Negates the fixed-point operand in Rx by twos-complement. The result is
placed in the fixed-point field in register Rn. The floating-point extension
field in Rn is set to all 0s. Negation of the minimum negative number
(0x8000 0000) causes an overflow. In saturation mode (the ALU satura-
tion mode bit in MODE1 set), overflow causes the maximum positive
number (0x7FFF FFFF) to be returned.

Status Flags

AZ Set if the fixed-point output is all 0s

AU Cleared

AN Set if the most significant output bit is 1

AV Set if the XOR of the carries of the two most significant adder stages is 1

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-19

Computations Reference

Rn = ABS Rx

Function

Determines the absolute value of the fixed-point operand in Rx. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s. The ABS of the minimum negative
number (0x8000 0000) causes an overflow. In saturation mode (the ALU
saturation mode bit in MODE1 set), overflow causes the maximum positive
number (0x7FFF FFFF) to be returned.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Set if the fixed-point operand in Rx is negative, otherwise cleared

AI Cleared

ALU Operations

7-20 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = PASS Rx

Function

Passes the fixed-point operand in Rx through the ALU to the fixed-point
field in register Rn. The floating-point extension field in Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-21

Computations Reference

Rn = Rx AND Ry

Function

Logically ANDs the fixed-point operands in Rx and Ry. The result is
placed in the fixed-point field in Rn. The floating-point extension field in
Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ALU Operations

7-22 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = Rx OR Ry

Function

Logically ORs the fixed-point operands in Rx and Ry. The result is placed
in the fixed-point field in Rn. The floating-point extension field in Rn is
set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-23

Computations Reference

Rn = Rx XOR Ry

Function

Logically XORs the fixed-point operands in Rx and Ry. The result is
placed in the fixed-point field in Rn. The floating-point extension field in
Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ALU Operations

7-24 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = NOT Rx

Function

Logically complements the fixed-point operand in Rx. The result is placed
in the fixed-point field in Rn. The floating-point extension field in Rn is
set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-25

Computations Reference

Rn = MIN(Rx, Ry)

Function

Returns the smaller of the two fixed-point operands in Rx and Ry. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ALU Operations

7-26 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = MAX(Rx, Ry)

Function

Returns the larger of the two fixed-point operands in Rx and Ry. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-27

Computations Reference

Rn = CLIP Rx BY Ry

Function

Returns the fixed-point operand in Rx if the absolute value of the operand
in Rx is less than the absolute value of the fixed-point operand in Ry. Oth-
erwise, returns |Ry| if Rx is positive, and –|Ry| if Rx is negative. The result
is placed in the fixed-point field in register Rn. The floating-point exten-
sion field in Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ALU Operations

7-28 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = Fx + Fy

Function

Adds the floating-point operands in registers Fx and Fy. The normalized
result is placed in register Fn. Rounding is to nearest (IEEE) or by trunca-
tion, to a 32-bit or to a 40-bit boundary, as defined by the rounding mode
and rounding boundary bits in MODE1. Post-rounded overflow returns
±Infinity (round-to-nearest) or ±NORM.MAX (round-to-zero).
Post-rounded denormal returns ±Zero. Denormal inputs are flushed to
±Zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed
Infinities, otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-29

Computations Reference

Fn = Fx – Fy

Function

Subtracts the floating-point operand in register Fy from the floating-point
operand in register Fx. The normalized result is placed in register Fn.
Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit
boundary, as defined by the rounding mode and rounding boundary bits
in MODE1. Post-rounded overflow returns ±Infinity (round-to-nearest) or
±NORM.MAX (round-to-zero). Post-rounded denormal returns ±Zero.
Denormal inputs are flushed to ±Zero. A NAN input returns an all 1s
result.

Status Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are like-signed Infini-
ties, otherwise cleared

ALU Operations

7-30 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = ABS (Fx + Fy)

Function

Adds the floating-point operands in registers Fx and Fy, and places the
absolute value of the normalized result in register Fn. Rounding is to near-
est (IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as defined
by the rounding mode and rounding boundary bits in MODE1.

Post-rounded overflow returns +Infinity (round-to-nearest) or
+NORM.MAX (round-to-zero). Post-rounded denormal returns +Zero.
Denormal inputs are flushed to ±Zero. A NAN input returns an all 1s
result.

Status Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed
Infinities, otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-31

Computations Reference

Fn = ABS (Fx – Fy)

Function

Subtracts the floating-point operand in Fy from the floating-point oper-
and in Fx and places the absolute value of the normalized result in register
Fn. Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a
40-bit boundary, as defined by the rounding mode and rounding bound-
ary bits in MODE1. Post-rounded overflow returns +Infinity
(round-to-nearest) or +NORM.MAX (round-to-zero). Post-rounded
denormal returns +Zero. Denormal inputs are flushed to ±Zero. A NAN
input returns an all 1s result.

Status Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are like-signed Infini-
ties, otherwise cleared

ALU Operations

7-32 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = (Fx + Fy)/2

Function

Adds the floating-point operands in registers Fx and Fy and divides the
result by 2, by decrementing the exponent of the sum before rounding.
The normalized result is placed in register Fn. Rounding is to nearest
(IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as defined by
the rounding mode and rounding boundary bits in MODE1. Post-rounded
overflow returns ±Infinity (round-to-nearest) or ±NORM.MAX
(round-to-zero). Post-rounded denormal results return ±Zero. A denormal
input is flushed to ±Zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or zero, oth-
erwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), otherwise
cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed Infinities,
otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-33

Computations Reference

COMP(Fx, Fy)

Function

Compares the floating-point operand in register Fx with the float-
ing-point operand in register Fy. Sets the AZ flag if the two operands are
equal, and the AN flag if the operand in register Fx is smaller than the oper-
and in register Fy.

The ASTAT register stores the results of the previous eight ALU compare
operations in bits 24-31. These bits are shifted right (bit 24 is overwritten)
whenever a fixed-point or floating-point compare instruction is executed.
The MSB of ASTAT is set if the X operand is greater than the Y operand (its
value is the AND of AZ and AN); it is otherwise cleared.

Status Flags

AZ Set if the operands in registers Fx and Fy are equal, otherwise cleared

AU Cleared

AN Set if the operand in the Fx register is smaller than the operand in the Fy reg-
ister, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

ALU Operations

7-34 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = –Fx

Function

Complements the sign bit of the floating-point operand in Fx. The com-
plemented result is placed in register Fn. A denormal input is flushed to
±Zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the result operand is a ±Zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-35

Computations Reference

Fn = ABS Fx

Function

Returns the absolute value of the floating-point operand in register Fx by
setting the sign bit of the operand to 0. Denormal inputs are flushed to
+Zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the result operand is +Zero, otherwise cleared

AU Cleared

AN Cleared

AV Cleared

AC Cleared

AS Set if the input operand is negative, otherwise cleared

AI Set if the input operand is a NAN, otherwise cleared

ALU Operations

7-36 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = PASS Fx

Function

Passes the floating-point operand in Fx through the ALU to the float-
ing-point field in register Fn. Denormal inputs are flushed to ±Zero. A
NAN input returns an all 1s result.

Status Flags

AZ Set if the result operand is a ±Zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-37

Computations Reference

Fn = RND Fx

Function

Rounds the floating-point operand in register Fx to a 32 bit boundary.
Rounding is to nearest (IEEE) or by truncation, as defined by the round-
ing mode bit in MODE1. Post-rounded overflow returns ±Infinity
(round-to-nearest) or ±NORM.MAX (round-to-zero). A denormal input
is flushed to ±Zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the result operand is a ±Zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

ALU Operations

7-38 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = SCALB Fx BY Ry

Function

Scales the exponent of the floating-point operand in Fx by adding to it the
fixed-point twos-complement integer in Ry. The scaled floating-point
result is placed in register Fn. Overflow returns ±Infinity (round-to-near-
est) or ±NORM.MAX (round-to-zero). Denormal returns ±Zero.
Denormal inputs are flushed to ±Zero. A NAN input returns an all 1s
result.

Status Flags

AZ Set if the result is a denormal (unbiased exponent < –126) or zero, otherwise
cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the result overflows (unbiased exponent > +127), otherwise cleared

AC Cleared

AS Cleared

AI Set if the input is a NAN, an otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-39

Computations Reference

Rn = MANT Fx

Function

Extracts the mantissa (fraction bits with explicit hidden bit, excluding the
sign bit) from the floating-point operand in Fx. The unsigned-magnitude
result is left-justified (1.31 format) in the fixed-point field in Rn. Round-
ing modes are ignored and no rounding is performed because all results
are inherently exact. Denormal inputs are flushed to ±Zero. A NAN or an
Infinity input returns an all 1s result (–1 in signed fixed-point format).

Status Flags

AZ Set if the result is zero, otherwise cleared

AU Cleared

AN Cleared

AV Cleared

AC Cleared

AS Set if the input is negative, otherwise cleared

AI Set if the input operands is a NAN or an Infinity, otherwise cleared

ALU Operations

7-40 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = LOGB Fx

Function

Converts the exponent of the floating-point operand in register Fx to an
unbiased twos-complement fixed-point integer. The result is placed in the
fixed-point field in register Rn. Unbiasing is done by subtracting 127
from the floating-point exponent in Fx. If saturation mode is not set, a
±Infinity input returns a floating-point +Infinity and a ±Zero input
returns a floating-point –Infinity. If saturation mode is set, a ±Infinity
input returns the maximum positive value (0x7FFF FFFF), and a ±Zero
input returns the maximum negative value (0x8000 0000). Denormal
inputs are flushed to ±Zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the fixed-point result is zero, otherwise cleared

AU Cleared

AN Set if the result is negative, otherwise cleared

AV Set if the input operand is an Infinity or a Zero, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input is a NAN, otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-41

Computations Reference

Rn = FIX Fx
Rn = TRUNC Fx
Rn = FIX Fx BY Ry
Rn = TRUNC Fx BY Ry

Function

Converts the floating-point operand in Fx to a twos-complement 32-bit
fixed-point integer result.

If the MODE1 register TRUNC bit=1, the Fix operation truncates the mantissa
towards –Infinity. If the TRUNC bit=0, the Fix operation rounds the man-
tissa towards the nearest integer.

The Trunc operation always truncates toward 0. The TRUNC bit does not
influence operation of the Trunc instruction.

If a scaling factor (Ry) is specified, the fixed-point twos-complement inte-
ger in Ry is added to the exponent of the floating-point operand in Fx
before the conversion.

The result of the conversion is right-justified (32.0 format) in the
fixed-point field in register Rn. The floating-point extension field in Rn is
set to all 0s.

In saturation mode (the ALU saturation mode bit in MODE1 set) positive
overflows and +Infinity return the maximum positive number
(0x7FFF FFFF), and negative overflows and –Infinity return the mini-
mum negative number (0x8000 0000).

For the Fix operation, rounding is to nearest (IEEE) or by truncation, as
defined by the rounding mode bit in MODE1. A NAN input returns a float-
ing-point all 1s result. If saturation mode is not set, an Infinity input or a
result that overflows returns a floating-point result of all 1s.

ALU Operations

7-42 ADSP-21160 SHARC DSP Instruction Set Reference

All positive underflows return zero. Negative underflows that are
rounded-to-nearest return zero, and negative underflows that are rounded
by truncation return –1 (0xFF FFFF FF00).

Status Flags

AZ Set if the fixed-point result is Zero, otherwise cleared

AU Set if the pre-rounded result is a denormal, otherwise cleared

AN Set if the fixed-point result is negative, otherwise cleared

AV Set if the conversion causes the floating-point mantissa to be shifted left, that
is, if the floating-point exponent + scale bias is >157 (127 + 31 – 1) or if the
input is ±Infinity, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN or, when saturation mode is not set, either
input is an Infinity or the result overflows, otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-43

Computations Reference

Fn = FLOAT Rx BY Ry
Fn = FLOAT Rx

Function

Converts the fixed-point operand in Rx to a floating-point result. If a scal-
ing factor (Ry) is specified, the fixed-point twos-complement integer in
Ry is added to the exponent of the floating-point result. The final result is
placed in register Fn. Rounding is to nearest (IEEE) or by truncation, as
defined by the rounding mode, to a 40-bit boundary, regardless of the val-
ues of the rounding boundary bits in MODE1. The exponent scale bias may
cause a floating-point overflow or a floating-point underflow. Overflow
generates a return of ±Infinity (round-to-nearest) or ±NORM.MAX
(round-to-zero); underflow generates a return of ±Zero.

Status Flags

AZ Set if the result is a denormal (unbiased exponent < –126) or zero, otherwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the result overflows (unbiased exponent >127)

AC Cleared

AS Cleared

AI Cleared

ALU Operations

7-44 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = RECIPS Fx

Function

Creates an 8-bit accurate seed for 1/Fx, the reciprocal of Fx. The mantissa
of the seed is determined from a ROM table using the 7 MSBs (excluding
the hidden bit) of the Fx mantissa as an index. The unbiased exponent of
the seed is calculated as the twos complement of the unbiased Fx expo-
nent, decremented by one; that is, if e is the unbiased exponent of Fx,
then the unbiased exponent of Fn = –e – 1. The sign of the seed is the sign
of the input. A ±Zero returns ±Infinity and sets the overflow flag. If the
unbiased exponent of Fx is greater than +125, the result is ±Zero. A NAN
input returns an all 1s result.

The following code performs floating-point division using an iterative
convergence algorithm.1 The result is accurate to one LSB in whichever
format mode, 32-bit or 40-bit, is set (32-bit only for ADSP-21010). The
following inputs are required: F0=numerator, F12=denominator,
F11=2.0. The quotient is returned in F0. (The two highlighted instruc-
tions can be removed if only a ±1 LSB accurate single-precision result is
necessary.)

F0=RECIPS F12, F7=F0; {Get 8 bit seed R0=1/D}

F12=F0*F12; {D' = D*R0}

F7=F0*F7, F0=F11-F12; {F0=R1=2-D', F7=N*R0}

F12=F0*F12; {F12=D'-D'*R1}

F7=F0*F7, F0=F11-F12; {F7=N*R0*R1, F0=R2=2-D'}

F12=F0*F12; {F12=D'=D'*R2}

F7=F0*F7, F0=F11-F12; {F7=N*R0*R1*R2, F0=R3=2-D'}

F0=F0*F7; {F7=N*R0*R1*R2*R3}

To make this code segment a subroutine, add an RTS(DB) clause to the
third-to-last instruction.

1 Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 284.

ADSP-21160 SHARC DSP Instruction Set Reference 7-45

Computations Reference

Status Flags

AZ Set if the floating-point result is ±Zero (unbiased exponent of Fx is greater
than +125), otherwise cleared

AU Cleared

AN Set if the input operand is negative, otherwise cleared

AV Set if the input operand is ±Zero, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

ALU Operations

7-46 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = RSQRTS Fx

Function

Creates a 4-bit accurate seed for 1/(Fx)½, the reciprocal square root of Fx.

The mantissa of the seed is determined from a ROM table, using the LSB
of the biased exponent of Fx concatenated with the six MSBs (excluding
the hidden bit of the mantissa) of Fx’s an index.

The unbiased exponent of the seed is calculated as the twos complement
of the unbiased Fx exponent, shifted right by one bit and decremented by
one; that is, if e is the unbiased exponent of Fx, then the unbiased expo-
nent of Fn = –INT[e/2] – 1.

The sign of the seed is the sign of the input. The input ±Zero returns
±Infinity and sets the overflow flag. The input +Infinity returns +Zero. A
NAN input or a negative nonzero input returns a result of all 1s.

The following code calculates a floating-point reciprocal square root
(1/(x)½) using a Newton-Raphson iteration algorithm.1 The result is accu-
rate to one LSB in whichever format mode, 32-bit or 40-bit, is set (32-bit
only for ADSP-21010).

To calculate the square root, simply multiply the result by the original
input. The following inputs are required: F0=input, F8=3.0, F1=0.5. The
result is returned in F4. (The four highlighted instructions can be
removed if only a ±1 LSB accurate single-precision result is necessary.)

F4=RSQRTS F0; {Fetch 4-bit seed}

F12=F4*F4; {F12=X0^2}

F12=F12*F0; {F12=C*X0^2}

F4=F1*F4, F12=F8-F12; {F4=.5*X0, F12=3-C*X0^2}

F4=F4*F12; {F4=X1=.5*X0(3-C*X0^2)}

F12=F4*F4; {F12=X1^2}

1 Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 278.

ADSP-21160 SHARC DSP Instruction Set Reference 7-47

Computations Reference

F12=F12*F0; {F12=C*X1^2}

F4=F1*F4, F12=F8-F12; {F4=.5*X1, F12=3-C*X1^2}

F4=F4*F12; {F4=X2=.5*X1(3-C*X1^2)}

F12=F4*F4; {F12=X2^2}

F12=F12*F0; {F12=C*X2^2}

F4=F1*F4, F12=F8-F12; {F4=.5*X2, F12=3-C*X2^2}

F4=F4*F12; {F4=X3=.5*X2(3-C*X2^2)}

Note that this code segment can be made into a subroutine by adding an
RTS(DB) clause to the third-to-last instruction.

Status Flags

AZ Set if the floating-point result is +Zero (Fx = +Infinity), otherwise cleared

AU Cleared

AN Set if the input operand is –Zero, otherwise cleared

AV Set if the input operand is ±Zero, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input operand is negative and nonzero, or a NAN, otherwise
cleared

ALU Operations

7-48 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = Fx COPYSIGN Fy

Function

Copies the sign of the floating-point operand in register Fy to the float-
ing-point operand from register Fx without changing the exponent or the
mantissa. The result is placed in register Fn. A denormal input is flushed
to ±Zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the floating-point result is ±Zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-49

Computations Reference

Fn = MIN(Fx, Fy)

Function

Returns the smaller of the floating-point operands in register Fx and Fy. A
NAN input returns an all 1s result. The MIN of +Zero and –Zero returns
–Zero. Denormal inputs are flushed to ±Zero.

Status Flags

AZ Set if the floating-point result is ±Zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

ALU Operations

7-50 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = MAX(Fx, Fy)

Function

Returns the larger of the floating-point operands in registers Fx and Fy. A
NAN input returns an all 1s result. The MAX of +Zero and –Zero returns
+Zero. Denormal inputs are flushed to ±Zero.

Status Flags

AZ Set if the floating-point result is ±Zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-51

Computations Reference

Fn = CLIP Fx BY Fy

Function

Returns the floating-point operand in Fx if the absolute value of the oper-
and in Fx is less than the absolute value of the floating-point operand in
Fy. Else, returns | Fy | if Fx is positive, and –| Fy | if Fx is negative. A
NAN input returns an all 1s result. Denormal inputs are flushed to ±Zero.

Status Flags

Multiplier Operations
This section describes the multiplier operations. Table 7-3 and Table 7-4
on page 7-54 summarize the syntax and opcodes for the fixed-point and
floating-point multiplier operations, respectively. These tables use the fol-
lowing symbols to indicate location of operands and other features:

• y = y-input (1 = signed, 0 = unsigned)

• x = x-input (1 = signed, 0 = unsigned)

AZ Set if the floating-point result is ±Zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

Multiplier Operations

7-52 ADSP-21160 SHARC DSP Instruction Set Reference

• f = format (1 = fractional, 0 = integer)

• r = rounding (1 = yes, 0 = no)

ADSP-21160 SHARC DSP Instruction Set Reference 7-53

Computations Reference

Multiplier Fixed-Point Operations

Table 7-3. Fixed-Point Multiplier Operations

Syntax Opcode Reference Page

Rn = Rx*Ry mod2 01yx f00r on page 7-56

MRF = Rx*Ry mod2 01yx f10r on page 7-56

MRB = Rx*Ry mod2 01yx f11r on page 7-56

Rn = MRF +Rx*Ry mod2 10yx f00r on page 7-57

Rn = MRB +Rx*Ry mod2 10yx f01r on page 7-57

MRF = MRF +Rx*Ry mod2 10yx f10r on page 7-57

MRB = MRB +Rx*Ry mod2 10yx f11r on page 7-57

Rn = MRF –Rx*Ry mod2 11yx f00r on page 7-58

Rn = MRB –Rx*Ry mod2 11yx f01r on page 7-58

MRF = MRF –Rx*Ry mod2 11yx f10r on page 7-58

MRB = MRB –Rx*Ry mod2 11yx f11r on page 7-58

Rn = SAT MRF mod1 0000 f00x on page 7-59

Rn = SAT MRB mod1 0000 f01x on page 7-59

MRF = SAT MRF mod1 0000 f10x on page 7-59

MRB = SAT MRB mod1 0000 f11x on page 7-59

Rn =RND MRF mod1 0001 100x on page 7-60

Rn = RND MRB mod1 0001 101x on page 7-60

MRF = RND MRF mod1 0001 110x on page 7-60

MRB = RND MRB mod1 0001 111x on page 7-60

MRF = 0 0001 0100 on page 7-61

MRB = 0 0001 0110r on page 7-61

MR = Rn on page 7-62

Rn = MR on page 7-62

Multiplier Operations

7-54 ADSP-21160 SHARC DSP Instruction Set Reference

Multiplier Floating-Point Operations

Mod1 and Mod2 Modifiers
Mod2 in Table 7-3 on page 7-53 is an optional modifier. It is enclosed in
parentheses and consists of three or four letters that indicate whether:

• The x-input is signed (S) or unsigned (U)

• The y-input is signed or unsigned

• The inputs are in integer (I) or fractional (F) format

• The result written to the register file will be rounded-to-nearest
(R).

Table 7-5 lists the options for mod2 and the corresponding opcode values.

Table 7-4. Floating-Point Multiplier Operations

Syntax Opcode Reference Page

Fn = Fx*Fy 0011 0000 on page 7-64

Table 7-5. Mod2 Options and Opcodes

Option Opcode

(SSI) _ _11 0_ _0

(SUI) _ _01 0_ _0

(USI) _ _10 0_ _0

(UUI) _ _00 0_ _0

(SSF) _ _11 1_ _0

(SUF) _ _01 1_ _0

(USF) _ _10 1_ _0

(UUF) _ _00 1_ _0

ADSP-21160 SHARC DSP Instruction Set Reference 7-55

Computations Reference

Similarly, mod1 in Table 7-3 on page 7-53 is an optional modifier,
enclosed in parentheses, consisting of two letters that indicate whether the
input is signed (S) or unsigned (U) and whether the input is in integer (I)
or fractional (F) format. The options for mod1 and the corresponding
opcode values are listed in Table 7-6.

(SSFR) _ _11 1_ _1

(SUFR) _ _01 1_ _1

(USFR) _ _10 1_ _1

(UUFR) _ _00 1_ _1

Table 7-6. Mod1 Options and Opcodes

Option Opcode

(SI) (for SAT only) _ _ _ _ 0 _ _ 1

(UI) (for SAT only) _ _ _ _ 0 _ _ 0

(SF) _ _ _ _ 1 _ _ 1

(UF) _ _ _ _ 1 _ _ 0

Table 7-5. Mod2 Options and Opcodes (Cont’d)

Option Opcode

Multiplier Operations

7-56 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = Rx * Ry mod2
MRF = Rx * Ry mod2
MRB Rx * Ry mod2

Function

Multiplies the fixed-point fields in registers Rx and Ry.

If rounding is specified (fractional data only), the result is rounded. The
result is placed either in the fixed-point field in register Rn or one of the
MR accumulation registers.

If Rn is specified, only the portion of the result that has the same format
as the inputs is transferred (bits 31–0 for integers, bits 63–32 for frac-
tional). The floating-point extension field in Rn is set to all 0s. If MRF or
MRB is specified, the entire 80-bit result is placed in MRF or MRB.

Status Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); Number of upper bits depends on format; For a signed result,
fractional=33, integer=49; For an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; Integer results
do not underflow

MI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-57

Computations Reference

Rn = MRF + Rx * Ry mod2
Rn = MRB + Rx * Ry mod2
MRF = MRF + Rx * Ry mod2
MRB = MRB + Rx * Ry mod2

Function

Multiplies the fixed-point fields in registers Rx and Ry, and adds the prod-
uct to the specified MR register value. If rounding is specified (fractional
data only), the result is rounded. The result is placed either in the
fixed-point field in register Rn or one of the MR accumulation registers,
which must be the same MR register that provided the input. If Rn is speci-
fied, only the portion of the result that has the same format as the inputs is
transferred (bits 31–0 for integers, bits 63–32 for fractional). The float-
ing-point extension field in Rn is set to all 0s. If MRF or MRB is specified, the
entire 80-bit result is placed in MRF or MRB.

Status Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); Number of upper bits depends on format; For a signed result,
fractional=33, integer=49; For an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; Integer results
do not underflow

MI Cleared

Multiplier Operations

7-58 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = MRF – Rx * Ry mod2
Rn = MRB – Rx * Ry mod2
MRF = MRF – Rx * Ry mod2
MRB = MRB – Rx * Ry mod2

Function

Multiplies the fixed-point fields in registers Rx and Ry, and subtracts the
product from the specified MR register value. If rounding is specified (frac-
tional data only), the result is rounded. The result is placed either in the
fixed-point field in register Rn or in one of the MR accumulation registers,
which must be the same MR register that provided the input. If Rn is speci-
fied, only the portion of the result that has the same format as the inputs is
transferred (bits 31–0 for integers, bits 63–32 for fractional). The float-
ing-point extension field in Rn is set to all 0s. If MRF or MRB is specified, the
entire 80-bit result is placed in MRF or MRB.

Status Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); Number of upper bits depends on format; For a signed result,
fractional=33, integer=49; For an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; Integer results
do not underflow

MI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-59

Computations Reference

Rn = SAT MRF mod1
Rn = SAT MRB mod1
MRF = SAT MRF mod1
MRB = SAT MRB mod1

Function

If the value of the specified MR register is greater than the maximum value
for the specified data format, the multiplier sets the result to the maxi-
mum value. Otherwise, the MR value is unaffected. The result is placed
either in the fixed-point field in register Rn or one of the MR accumulation
registers, which must be the same MR register that provided the input. If
Rn is specified, only the portion of the result that has the same format as
the inputs is transferred (bits 31–0 for integers, bits 63–32 for fractional).
The floating-point extension field in Rn is set to all 0s. If MRF or MRB is
specified, the entire 80-bit result is placed in MRF or MRB.

Status Flags

MN Set if the result is negative, otherwise cleared

MV Cleared

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; Integer results
do not underflow

MI Cleared

Multiplier Operations

7-60 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = RND MRF mod1
Rn = RND MRB mod1
MRF = RND MRF mod1
MRB = RND MRB mod1

Function

Rounds the specified MR value to nearest at bit 32 (the MR1–MR0 bound-
ary). The result is placed either in the fixed-point field in register Rn or
one of the MR accumulation registers, which must be the same MR register
that provided the input. If Rn is specified, only the portion of the result
that has the same format as the inputs is transferred (bits 31–0 for inte-
gers, bits 63–32 for fractional). The floating-point extension field in Rn is
set to all 0s. If MRF or MRB is specified, the entire 80-bit result is placed in
MRF or MRB.

Status Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); Number of upper bits depends on format; For a signed result,
fractional=33, integer=49; For an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; Integer results
do not underflow

MI Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-61

Computations Reference

MRF = 0
MRB = 0

Function

Sets the value of the specified MR register to zero. All 80 bits (MR2, MR1, MR0)
are cleared.

Status Flags

MN Cleared

MV Cleared

MU Cleared

MI Cleared

Multiplier Operations

7-62 ADSP-21160 SHARC DSP Instruction Set Reference

MRxF/B = Rn/Rn = MRxF/B

Function

A transfer to an MR register places the fixed-point field of register Rn in the
specified MR register. The floating-point extension field in Rn is ignored. A
transfer from an MR register places the specified MR register in the
fixed-point field in register Rn. The floating-point extension field in Rn is
set to all 0s.

Syntax Variations

MR0F = Rn Rn = MR0F

MR1F = Rn Rn = MR1F

MR2F = Rn Rn = MR2F

MR0B = Rn Rn = MR0B

MR1B = Rn Rn = MR1B

MR2B = Rn Rn = MR2B

Compute Field

Table 7-7 indicates how Ai specifies the MR register, and Rk specifies the
data register. The T determines the direction of the transfer (0=to register
file, 1=to MR register).

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

100000 T Ai Rk

Table 7-7. Ai Values and MR Registers

Ai MR Register

0000 MR0F

0001 MR1F

ADSP-21160 SHARC DSP Instruction Set Reference 7-63

Computations Reference

Status Flags

0010 MR2F

0100 MR0B

0101 MR1B

0110 MR2B

MN Cleared

MV Cleared

MU Cleared

MI Cleared

Table 7-7. Ai Values and MR Registers (Cont’d)

Ai MR Register

Shifter Operations

7-64 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = Fx * Fy

Function

Multiplies the floating-point operands in registers Fx and Fy and places
the result in the register Fn.

Status Flags

Shifter Operations
Shifter operations are described in this section. Table 7-8 lists the syntax
and opcodes for the shifter operations. The succeeding pages provide
detailed descriptions of each operation. Some of the instructions in
Table 7-8 accept the following modifiers.

• (SE) = Sign extension of deposited or extracted field

• (EX) = Extended exponent extract

Shifter Opcodes
The shifter operates on the register file’s 32-bit fixed-point fields
(bits 38-9). Two-input shifter operations can take their y input from the
register file or from immediate data provided in the instruction. Either
form uses the same opcode. However, the latter case, called an immediate
shift or shifter immediate operation, is allowed only with instruction type

MN Set if the result is negative, otherwise cleared

MV Set if the unbiased exponent of the result is greater than 127, otherwise cleared

MU Set if the unbiased exponent of the result is less than –126, otherwise cleared

MI Set if either input is a NAN or if the inputs are ±Infinity and ±Zero, otherwise
cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-65

Computations Reference

6, which has an immediate data field in its opcode for this purpose. All
other instruction types must obtain the y input from the register file when
the compute operation is a two-input shifter operation.

Table 7-8. Shifter Operations

Syntax Opcode Reference Page

Rn = LSHIFT Rx BY Ry|<data8> 0000 0000 on page 7-66

Rn = Rn OR LSHIFT Rx BY Ry|<data8> 0010 0000 on page 7-67

Rn = ASHIFT Rx BY Ry|<data8> 0000 0100 on page 7-68

Rn = Rn OR ASHIFT Rx BY Ry|<data8> 0010 0100 on page 7-69

Rn = ROT Rx BY Ry|<data8> 0000 1000 on page 7-70

Rn = BCLR Rx BY Ry|<data8> 1100 0100 on page 7-71

Rn =BSET Rx BY Ry|<data8> 1100 0000 on page 7-72

Rn = BTGL Rx BY Ry|<data8> 1100 1000 on page 7-73

BTST Rx BY Ry|<data8> 1100 1100 on page 7-74

Rn = FDEP Rx BY Ry|<bit6>:<len6> 0100 0100 on page 7-75

Rn = Rn OR FDEP Rx BY Ry|<bit6>:<len6> 0110 0100 on page 7-77

Rn = FDEP Rx BY Ry|<bit6>:<len6> (SE) 0100 1100 on page 7-79

Rn = Rn OR FDEP Rx BY Ry|<bit6>:<len6>(SE) 0110 1100 on page 7-81

Rn = FEXT RX BY Ry|<bit6>:<len6> 0100 0000 on page 7-83

Rn = FEXT Rx BY Ry|<bit6>:<len6> (SE) 0100 1000 on page 7-85

Rn = EXP Rx 1000 0000 on page 7-87

Rn = EXP Rx (EX) 1000 0100 on page 7-88

Rn = LEFTZ Rx 1000 1000 on page 7-89

Rn = LEFTO Rx 1000 1100 on page 7-90

Rn = FPACK Fx 1001 0000 on page 7-91

Fn = FUNPACK Rx 1001 0100 on page 7-92

Shifter Operations

7-66 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = LSHIFT Rx BY Ry
Rn = LSHIFT Rx BY <data8>

Function

Logically shifts the fixed-point operand in register Rx by the 32-bit value
in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is placed in the fixed-point field of register Rn. The float-
ing-point extension field of Rn is set to all 0s. The shift values are
twos-complement numbers. Positive values select a left shift, negative val-
ues select a right shift. The 8-bit immediate data can take values between
–128 and 127 inclusive, allowing for a shift of a 32-bit field from off-scale
right to off-scale left.

Status Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted to the left by more than 0, otherwise cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-67

Computations Reference

Rn = Rn OR LSHIFT Rx BY Ry
Rn = Rn OR LSHIFT Rx BY <data8>

Function

Logically shifts the fixed-point operand in register Rx by the 32-bit value
in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is logically ORed with the fixed-point field of register Rn
and then written back to register Rn. The floating-point extension field of
Rn is set to all 0s. The shift values are twos-complement numbers. Positive
values select a left shift, negative values select a right shift. The 8-bit
immediate data can take values between –128 and 127 inclusive, allowing
for a shift of a 32-bit field from off-scale right to off-scale left.

Status Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

SS Cleared

Shifter Operations

7-68 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = ASHIFT Rx BY Ry
Rn = ASHIFT Rx BY <data8>

Function

Arithmetically shifts the fixed-point operand in register Rx by the 32-bit
value in register Ry or by the 8-bit immediate value in the instruction.
The shifted result is placed in the fixed-point field of register Rn. The
floating-point extension field of Rn is set to all 0s. The shift values are
twos-complement numbers. Positive values select a left shift, negative val-
ues select a right shift. The 8-bit immediate data can take values between
–128 and 127 inclusive, allowing for a shift of a 32-bit field from off-scale
right to off-scale left.

Status Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-69

Computations Reference

Rn = Rn OR ASHIFT Rx BY Ry
Rn = Rn OR ASHIFT Rx BY <data8>

Function

Arithmetically shifts the fixed-point operand in register Rx by the 32-bit
value in register Ry or by the 8-bit immediate value in the instruction.
The shifted result is logically ORed with the fixed-point field of register
Rn and then written back to register Rn. The floating-point extension
field of Rn is set to all 0s. The shift values are twos-complement numbers.
Positive values select a left shift, negative values select a right shift. The
8-bit immediate data can take values between –128 and 127 inclusive,
allowing for a shift of a 32-bit field from off-scale right to off-scale left.

Status Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

SS Cleared

Shifter Operations

7-70 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = ROT Rx BY Ry
Rn = ROT Rx BY <data8>

Function

Rotates the fixed-point operand in register Rx by the 32-bit value in regis-
ter Ry or by the 8-bit immediate value in the instruction. The rotated
result is placed in the fixed-point field of register Rn. The floating-point
extension field of Rn is set to all 0s. The shift values are twos-complement
numbers. Positive values select a rotate left; negative values select a rotate
right. The 8-bit immediate data can take values between –128 and 127
inclusive, allowing for a rotate of a 32-bit field from full right wrap
around to full left wrap around.

Status Flags

SZ Set if the rotated result is zero, otherwise cleared

SV Cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-71

Computations Reference

Rn = BCLR Rx BY Ry
Rn = BCLR Rx BY <data8>

Function

Clears a bit in the fixed-point operand in register Rx. The result is placed
in the fixed-point field of register Rn. The floating-point extension field
of Rn is set to all 0s. The position of the bit is the 32-bit value in register
Ry or the 8-bit immediate value in the instruction. The 8-bit immediate
data can take values between 31 and 0 inclusive, allowing for any bit
within a 32-bit field to be cleared. If the bit position value is greater than
31 or less than 0, no bits are cleared.

Status Flags

This compute operation affects a bit in a register file location.
There is also a bit manipulation instruction that affects one or
more bits in a system register. This Bit Clr instruction should not
be confused with the Bclr shifter operation. For more information
on Bit Clr, see “Type 18: System Register Bit Manipulation” on
page 6-2.

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

Shifter Operations

7-72 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = BSET Rx BY Ry
Rn = BSET Rx BY <data8>

Function

Sets a bit in the fixed-point operand in register Rx. The result is placed in
the fixed-point field of register Rn. The floating-point extension field of
Rn is set to all 0s. The position of the bit is the 32-bit value in register Ry
or the 8-bit immediate value in the instruction. The 8-bit immediate data
can take values between 31 and 0 inclusive, allowing for any bit within a
32-bit field to be set. If the bit position value is greater than 31 or less
than 0, no bits are set.

Status Flags

This compute operation affects a bit in a register file location.
There is also a bit manipulation instruction that affects one or
more bits in a system register. This Bit Set instruction should not
be confused with the Bset shifter operation. For more information
on Bit Set, see “Type 18: System Register Bit Manipulation” on
page 6-2.

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-73

Computations Reference

Rn = BTGL Rx BY Ry
Rn = BTGL Rx BY <data8>

Function

Toggles a bit in the fixed-point operand in register Rx. The result is placed
in the fixed-point field of register Rn. The floating-point extension field
of Rn is set to all 0s. The position of the bit is the 32-bit value in register
Ry or the 8-bit immediate value in the instruction. The 8-bit immediate
data can take values between 31 and 0 inclusive, allowing for any bit
within a 32-bit field to be toggled. If the bit position value is greater than
31 or less than 0, no bits are toggled.

Status Flags

This compute operation affects a bit in a register file location.
There is also a bit manipulation instruction that affects one or
more bits in a system register. This Bit Tgl instruction should not
be confused with the Btgl shifter operation. For more information
on Bit Tgl, see “Type 18: System Register Bit Manipulation” on
page 6-2.

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

Shifter Operations

7-74 ADSP-21160 SHARC DSP Instruction Set Reference

BTST Rx BY Ry
BTST Rx BY <data8>

Function

Tests a bit in the fixed-point operand in register Rx. The SZ flag is set if
the bit is a 0 and cleared if the bit is a 1. The position of the bit is the
32-bit value in register Ry or the 8-bit immediate value in the instruction.
The 8-bit immediate data can take values between 31 and 0 inclusive,
allowing for any bit within a 32-bit field to be tested. If the bit position
value is greater than 31 or less than 0, no bits are tested.

Status Flags

This compute operation tests a bit in a register file location. There
is also a bit manipulation instruction that tests one or more bits in
a system register. This Bit Tst instruction should not be confused
with the Btst shifter operation.

For more information on Bit Tst, see “Type 18: System Register
Bit Manipulation” on page 6-2.

SZ Cleared if the tested bit is a 1, is set if the tested bit is a 0 or if the bit posi-
tion is greater than 31

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-75

Computations Reference

Rn = FDEP Rx BY Ry
Rn = FDEP Rx BY <bit6>:<len6>

Function

Deposits a field from register Rx to register Rn. The input field is
right-aligned within the fixed-point field of Rx. Its length is determined
by the len6 field in register Ry or by the immediate len6 field in the
instruction. The field is deposited in the fixed-point field of Rn, starting
from a bit position determined by the bit6 field in register Ry or by the
immediate bit6 field in the instruction. Bits to the left and to the right of
the deposited field are set to 0. The floating-point extension field of Rn
(bits 7–0 of the 40-bit word) is set to all 0s. Bit6 and len6 can take values
between 0 and 63 inclusive, allowing for deposit of fields ranging in
length from 0 to 32 bits, and to bit positions ranging from 0 to off-scale
left.

Figure 7-1. Field Alignment

39 19 13 7 0

39 0

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

bit6 = starting bit position for deposit,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

deposit field

bit6 reference point

len6 bit6

Shifter Operations

7-76 ADSP-21160 SHARC DSP Instruction Set Reference

Example

If len6=14 and bit6=13, then the 14 bits of Rx are deposited in Rn bits
34–21 (of the 40-bit word).

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \-------------/

 14 bits

39 31 23 15 7 0

|00000abc|defghijk|lmn00000|00000000|00000000| Rn

 \--------------/

 |

 bit position 13 (from reference point)

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-77

Computations Reference

Rn = Rn OR FDEP Rx BY Ry
Rn = Rn OR FDEP Rx BY <bit6>:<len6>

Function

Deposits a field from register Rx to register Rn. The field value is logically
ORed bitwise with the specified field of register Rn and the new value is
written back to register Rn. The input field is right-aligned within the
fixed-point field of Rx. Its length is determined by the len6 field in regis-
ter Ry or by the immediate len6 field in the instruction.

The field is deposited in the fixed-point field of Rn, starting from a bit
position determined by the bit6 field in register Ry or by the immediate
bit6 field in the instruction. Bit6 and len6 can take values between 0 and
63 inclusive, allowing for deposit of fields ranging in length from 0 to 32
bits, and to bit positions ranging from 0 to off-scale left.

Example

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \--------------/

 len6 bits

39 31 23 15 7 0

|abcdefgh|ijklmnop|qrstuvwx|yzabcdef|ghijklmn| Rn old

 \--------------/

 |

 bit position bit6 (from reference point)

39 31 23 15 7 0

|abcdeopq|rstuvwxy|zabtuvwx|yzabcdef|ghijklmn| Rn new
 |

 OR result

Shifter Operations

7-78 ADSP-21160 SHARC DSP Instruction Set Reference

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-79

Computations Reference

Rn = FDEP Rx BY Ry (SE)
Rn = FDEP Rx BY <bit6>:<len6> (SE)

Function

Deposits and sign-extends a field from register Rx to register Rn. The
input field is right-aligned within the fixed-point field of Rx. Its length is
determined by the len6 field in register Ry or by the immediate len6 field
in the instruction. The field is deposited in the fixed-point field of Rn,
starting from a bit position determined by the bit6 field in register Ry or
by the immediate bit6 field in the instruction. The MSBs of Rn are
sign-extended by the MSB of the deposited field, unless the MSB of the
deposited field is off-scale left. Bits to the right of the deposited field are
set to 0. The floating-point extension field of Rn (bits 7–0 of the 40-bit
word) is set to all 0s. Bit6 and len6 can take values between 0 and 63
inclusive, allowing for deposit of fields ranging in length from 0 to 32 bits
into bit positions ranging from 0 to off-scale left.

Figure 7-2. Field Alignment

39 19 13 7 0

len6 bit6

39 0

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

bit6 = starting bit position for deposit,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

sign bit extension deposit field

bit6 reference point

Shifter Operations

7-80 ADSP-21160 SHARC DSP Instruction Set Reference

Example

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \---------------/

 len6 bits

39 31 23 15 7 0

|aaaaaabc|defghijk|lmn00000|00000000|00000000| Rn

\----/\--------------/

 sign |

 extension bit position bit6

 (from reference point)

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-81

Computations Reference

Rn = Rn OR FDEP Rx BY Ry (SE)
Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)

Function

Deposits and sign-extends a field from register Rx to register Rn. The
sign-extended field value is logically ORed bitwise with the value of regis-
ter Rn and the new value is written back to register Rn. The input field is
right-aligned within the fixed-point field of Rx. Its length is determined
by the len6 field in register Ry or by the immediate len6 field in the
instruction. The field is deposited in the fixed-point field of Rn, starting
from a bit position determined by the bit6 field in register Ry.

The bit position can also be determined by the immediate bit6 field in the
instruction. Bit6 and len6 can take values between 0 and 63 inclusive to
allow the deposit of fields ranging in length from 0 to 32 bits into bit posi-
tions ranging from 0 to off-scale left.

Example

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \-------------/

 len6 bits

39 31 23 15 7 0

|aaaaaabc|defghijk|lmn00000|00000000|00000000|

\----/\--------------/

 sign |

extension bit position bit6

 (from reference point)

39 31 23 15 7 0

|abcdefgh|ijklmnop|qrstuvwx|yzabcdef|ghijklmn| Rn old

Shifter Operations

7-82 ADSP-21160 SHARC DSP Instruction Set Reference

39 31 23 15 7 0

|vwxyzabc|defghijk|lmntuvwx|yzabcdef|ghijklmn| Rn new
 |

 OR result

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-83

Computations Reference

Rn = FEXT Rx BY Ry
Rn = FEXT Rx BY <bit6>:<len6>

Function

Extracts a field from register Rx to register Rn. The output field is placed
right-aligned in the fixed-point field of Rn. Its length is determined by the
len6 field in register Ry or by the immediate len6 field in the instruction.
The field is extracted from the fixed-point field of Rx starting from a bit
position determined by the bit6 field in register Ry or by the immediate
bit6 field in the instruction. Bits to the left of the extracted field are set to
0 in register Rn. The floating-point extension field of Rn (bits 7–0 of the
40-bit word) is set to all 0s. Bit6 and len6 can take values between 0 and
63 inclusive, allowing for extraction of fields ranging in length from 0 to
32 bits, and from bit positions ranging from 0 to off-scale left.

Figure 7-3. Field Alignment

39 19 13 7 0

39 0

extracted bits placed in Rn, starting at LSB of 32-bit field

bit6 = starting bit position for extract,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

bit6 reference point

extract field

bit6len6

Shifter Operations

7-84 ADSP-21160 SHARC DSP Instruction Set Reference

Example

39 31 23 15 7 0

|-----abc|defghijk|lmn-----|--------|--------| Rx

 \--------------/

 len6 bits |

 bit position bit6

 (from reference point)

39 31 23 15 7 0

|00000000|00000000|00abcdef|ghijklmn|00000000| Rn

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are extracted from the left of the 32-bit fixed-point, input field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-85

Computations Reference

Rn = FEXT Rx BY Ry (SE)
Rn = FEXT Rx BY <bit6>:<len6> (SE)

Function

Extracts and sign-extends a field from register Rx to register Rn. The out-
put field is placed right-aligned in the fixed-point field of Rn. Its length is
determined by the len6 field in register Ry or by the immediate len6 field
in the instruction. The field is extracted from the fixed-point field of Rx
starting from a bit position determined by the bit6 field in register Ry or
by the immediate bit6 field in the instruction. The MSBs of Rn are
sign-extended by the MSB of the extracted field, unless the MSB is
extracted from off-scale left.

The floating-point extension field of Rn (bits 7–0 of the 40-bit word) is
set to all 0s. Bit6 and len6 can take values between 0 and 63 inclusive,
allowing for extraction of fields ranging in length from 0 to 32 bits and
from bit positions ranging from 0 to off-scale left.

Example

39 31 23 15 7 0

|-----abc|defghijk|lmn-----|--------|--------| Rx

 \--------------/

 len6 bits |

 bit position bit6

 (from reference point)

39 31 23 15 7 0

|aaaaaaaa|aaaaaaaa|aaabcdef|ghijklmn|00000000| Rn

\-------------------/

 sign extension

Shifter Operations

7-86 ADSP-21160 SHARC DSP Instruction Set Reference

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are extracted from the left of the 32-bit fixed-point input field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-87

Computations Reference

Rn = EXP Rx

Function

Extracts the exponent of the fixed-point operand in Rx. The exponent is
placed in the shf8 field in register Rn. The exponent is calculated as the
twos-complement of:

 # leading sign bits in Rx – 1

Status Flags

SZ Set if the extracted exponent is 0, otherwise cleared

SV Cleared

SS Set if the fixed-point operand in Rx is negative (bit 31 is a 1), otherwise
cleared

Shifter Operations

7-88 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = EXP Rx (EX)

Function

Extracts the exponent of the fixed-point operand in Rx, assuming that the
operand is the result of an ALU operation. The exponent is placed in the
shf8 field in register Rn. If the AV status bit is set, a value of +1 is placed in
the shf8 field to indicate an extra bit (the ALU overflow bit). If the AV sta-
tus bit is not set, the exponent is calculated as the twos-complement of:

 # leading sign bits in Rx – 1

Status Flags

SZ Set if the extracted exponent is 0, otherwise cleared

SV Cleared

SS Set if the exclusive OR of the AV status bit and the sign bit (bit 31) of the
fixed-point operand in Rx is equal to 1, otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-89

Computations Reference

Rn = LEFTZ Rx

Function

Extracts the number of leading 0s from the fixed-point operand in Rx.
The extracted number is placed in the bit6 field in Rn.

Status Flags

SZ Set if the MSB of Rx is 1, otherwise cleared

SV Set if the result is 32, otherwise cleared

SS Cleared

Shifter Operations

7-90 ADSP-21160 SHARC DSP Instruction Set Reference

Rn = LEFTO Rx

Function

Extracts the number of leading 1s from the fixed-point operand in Rx.
The extracted number is placed in the bit6 field in Rn.

Status Flags

SZ Set if the MSB of Rx is 0, otherwise cleared

SV Set if the result is 32, otherwise cleared

SS Cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-91

Computations Reference

Rn = FPACK Fx

Function

Converts the IEEE 32-bit floating-point value in Fx to a 16-bit float-
ing-point value stored in Rn. The short float data format has an 11-bit
mantissa with a four-bit exponent plus sign bit. The 16-bit floating-point
numbers reside in the lower 16 bits of the 32-bit floating-point field.

The result of the FPACK operation is:

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number which would have
underflowed, the exponent is set to zero and the mantissa (including “hid-
den” 1) is right-shifted the appropriate amount. The packed result is a
denormal which can be unpacked into a normal IEEE floating-point
number.

Status Flags

135 < exp1

1 exp = source exponent sign bit remains the same in all cases

Largest magnitude representation

120 < exp ≤ 135 Exponent is MSB of source exponent concatenated with the three LSBs
of source exponent. The packed fraction is the rounded upper 11 bits of
the source fraction.

109 < exp ≤ 120 Exponent=0. Packed fraction is the upper bits (source exponent – 110)
of the source fraction prefixed by zeros and the “hidden” 1. The packed
fraction is rounded.

exp < 110 Packed word is all zeros.

SZ Cleared

SV Set if overflow occurs, cleared otherwise

SS Cleared

Shifter Operations

7-92 ADSP-21160 SHARC DSP Instruction Set Reference

Fn = FUNPACK Rx

Function

Converts the 16-bit floating-point value in Rx to an IEEE 32-bit float-
ing-point value stored in Fx.

Result

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number that would have
underflowed, the exponent is set to 0 and the mantissa (including “hid-
den” 1) is right-shifted the appropriate amount. The packed result is a
denormal, which can be unpacked into a normal IEEE floating-point
number.

0 < exp1 ≤ 15

1 exp = source exponent sign bit remains the same in all cases

Exponent is the three LSBs of the source exponent prefixed by the MSB
of the source exponent and four copies of the complement of the MSB.
The unpacked fraction is the source fraction with 12 zeros appended.

exp = 0 Exponent is (120 – N) where N is the number of leading zeros in the
source fraction. The unpacked fraction is the remainder of the source
fraction with zeros appended to pad it and the “hidden” 1 stripped
away.

ADSP-21160 SHARC DSP Instruction Set Reference 7-93

Computations Reference

Status Flags

Multifunction Computations
Multifunction computations are operations that occur simultaneously
within the DSP’s computational unit. The syntax for these operations
consists of combinations of instructions, delimited with commas and
ended with a semicolon. The three types of multifunction computations
appear below. Each type has a different format for the compute field.

• “Parallel Add and Subtract” on page 7-95

• “Parallel Multiplier and ALU” on page 7-98

• “Parallel Multiplier With Add and Subtract” on page 7-101

SZ Cleared

SV Cleared

SS Cleared

Multifunction Computations

7-94 ADSP-21160 SHARC DSP Instruction Set Reference

Operand Constraints
Each of the four input operands for multifunction computations are con-
strained to a different set of four register file locations, as shown in
Figure 7-4. For example, the x-input to the ALU must be R8, R9, R10, or
R11. In all other compute operations, the input operands can be any regis-
ter file location.

Figure 7-4. Permitted Input Registers for Multifunction Computations

R0 - F0

R1 - F1

R2 - F2

R3 - F3

R4 - F4

R5 - F5

R6 - F6

R7 - F7

R9 - F9

R10 - F10

R11 - F11

R12 - F12

R13 - F13

R14 - F14

R15 - F15

Multiplier

Any Register

ALU

Register File

Any Register

R8 - F8

R0 - F0

R1 - F1

R2 - F2

R3 - F3

R4 - F4

R5 - F5

R6 - F6

R7 - F7

R9 - F9

R10 - F10

R11 - F11

R12 - F12

R13 - F13

R14 - F14

R15 - F15

Multiplier

Any Register

ALU

Register File

Any Register

R8 - F8

ADSP-21160 SHARC DSP Instruction Set Reference 7-95

Computations Reference

Parallel Add and Subtract

Function (Fixed-Point)

Completes a dual add/subtract of the fixed-point fields in registers Rx and
Ry. The sum is placed in the fixed-point field of register Ra and the differ-
ence in the fixed-point field of Rs. The floating-point extension fields of
Ra and Rs are set to all 0s. In saturation mode (the ALU saturation mode
bit in MODE1 set) positive overflows return the maximum positive number
(0x7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Function (Floating-Point)

Completes a dual add/subtract of the floating-point operands in registers
Fx and Fy. The normalized results are placed in registers Fa and Fs: the
sum in Fa and the difference in Fs. Rounding is to nearest (IEEE) or by
truncation, to a 32-bit or to a 40-bit boundary, as defined by the rounding
mode and rounding boundary bits in MODE1. Post-rounded overflow
returns ±Infinity (round-to-nearest) or ±NORM.MAX (round-to-zero).
Post-rounded denormal returns ±Zero. Denormal inputs are flushed to
±Zero. A NAN input returns an all 1s result.

Syntax

Table 7-9 shows the fixed-point and floating-point syntax for multifunc-
tion add and subtract instructions.

Table 7-9. Multifunction, Parallel Add and Subtract

Syntax Opcode
(bits 19–16)

Ra = Rx + Ry, Rs = Rx – Ry 0111

Fa = Fx + Fy, Fs = Fx – Fy 1111

Multifunction Computations

7-96 ADSP-21160 SHARC DSP Instruction Set Reference

Compute Field (Fixed-Point)

Compute Field (Fixed-Point)

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 00 0111 Rs Ra Rx Ry

AZ Set if an output is 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1 for either of the outputs, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages of either of the
outputs is 1, otherwise cleared

AC Set if the carry from the most significant adder stage for either of the outputs is 1, oth-
erwise cleared

AS Cleared

AI Cleared

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 00 1111 Fs Fa Fx Fy

AZ Set if either of the post-rounded results is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AU Set if either post-rounded result is a denormal, otherwise cleared

AN Set if either of the floating-point results is negative, otherwise cleared

AV Set if a post-rounded result overflows (unbiased exponent > +127), otherwise cleared

ADSP-21160 SHARC DSP Instruction Set Reference 7-97

Computations Reference

AC Cleared

AS Cleared

AI Set if an input is a NAN or if both inputs are Infinities, otherwise cleared

Multifunction Computations

7-98 ADSP-21160 SHARC DSP Instruction Set Reference

Parallel Multiplier and ALU

Function

The parallel multiplier/ALU operation performs a multiply or multi-
ply/accumulate and one of the following ALU operations: Add, Subtract,
Average, Fixed-point to floating-point conversion or floating-point to
fixed-point conversion, and/or Floating-point Abs, Min, or Max.

The multiplier and ALU operations are determined by OPCODE. The selec-
tions for the 6-bit OPCODE field are listed in Table 7-11 on page 7-99. The
multiplier x and y operands are received from data registers RXM (FXM)
and RYM (FYM). The multiplier result operand is returned to data regis-
ter RM (FM). The ALU x and y operands are received from data registers
RXA (FXA) and RYA (FYA). The ALU result operand is returned to data
register RA (FA).

The result operands can be returned to any registers within the register
file. Each of the four input operands is restricted to a particular set of four
data registers.

Syntax

Table 7-11 provides the syntax and opcode for each of the parallel multi-
plier and ALU instructions for both fixed-point and floating-point
versions.

Table 7-10. Valid Data Registers for Input Operands

Input Valid Sources

Multiplier X R3-R0 (F3-F0)

Multiplier Y R7-R4 (F7-F4)

ALU X R11-R8 (F11-F8)

ALU Y R15-R12 (F15-F12)

ADSP-21160 SHARC DSP Instruction Set Reference 7-99

Computations Reference

Table 7-11. Multifunction, Multiplier and ALU

Syntax Opcode
(bits 22–16)

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12 1000100

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12 1000101

Rm = R3-0 * R7-4 (SSFR), Ra = (R11-8 + R15-12)/2 1000110

MRF = MRF + R3-0 * R7-4 (SSF), Ra = R11-8 + R15-12 1001000

MRF = MRF + R3-0 * R7-4 (SSF), Ra = R11-8 – R15-12 1001001

MRF = MRF + R3-0 * R7-4 (SSF), Ra = (R11-8 + R15-12)/2 1001010

Rm = MRF + R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12 1001100

Rm = MRF + R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12 1001101

Rm = MRF + R3-0 * R7-4 (SSFR), Ra =(R11-8 + R15-12)/2 1001110

MRF = MRF – R3-0 * R7-4 (SSF), Ra = R11-8 + R15-12 1010000

MRF = MRF – R3-0 * R7-4 (SSF), Ra = R11-8 – R15-12 1010001

MRF = MRF – R3-0 * R7-4 (SSF), Ra = (R11-8 + R15-12)/2 1010010

Rm = MRF – R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12 1010100

Rm = MRF – R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12 1010101

Rm = MRF – R3-0 * R7-4 (SSFR), Ra =(R11-8 + R15-12)/2 1010110

Fm = F3-0 * F7-4, Fa = F11-8 + F15-12 1011000

Fm = F3-0 * F7-4, Fa = F11-8 – F15-12 1011001

Fm = F3-0 * F7-4, Fa = FLOAT R11-8 by R15-12 1011010

Fm = F3-0 * F7-4, Fa = FIX F11-8 by R15-122 1011011

Fm = F3-0 * F7-4, Fa = ABS F11-8 1011101

Fm = F3-0 * F7-4, Fa = MAX (F11-8, F15-12) 1011110

Fm = F3-0 * F7-4, Fa = MIN (F11-8, F15-12) 1011111

Multifunction Computations

7-100 ADSP-21160 SHARC DSP Instruction Set Reference

Compute Field (Fixed-Point)

Compute Field (Floating-Point)

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Opcode (Table 7-11) Rs Ra Rxm Rym Rxa Rya

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Opcode (Table 7-11) Fs Fa Fxm Fym Fxa Fya

ADSP-21160 SHARC DSP Instruction Set Reference 7-101

Computations Reference

Parallel Multiplier With Add and Subtract

Function

The parallel multiplier and dual add/subtract operation performs a multi-
ply or multiply/accumulate and computes the sum and the difference of
the ALU inputs.

The multiplier x and y operands are received from data registers RXM
(FXM) and RYM (FYM). The multiplier result operand is returned to
data register RM (FM). The ALU x and y operands are received from data
registers RXA (FXA) and RYA (FYA). The ALU result operands are
returned to data register RA (FA) and RS (FS).

The result operands can be returned to any registers within the register
file. Each of the four input operands is restricted to a different set of four
data registers.

Syntax

Table 7-13 provides the syntax and opcode for each of the parallel multi-
plier and add/subtract instructions for both fixed-point and floating-point
versions.

Table 7-12. Valid Sources of the Input Operands

Input Valid Sources

Multiplier X R3-R0 (F3-F0)

Multiplier Y R7-R4 (f7-f4)

ALU X R11-R8 (F11-F8)

ALU Y R15-R12 (F15-F12)

Multifunction Computations

7-102 ADSP-21160 SHARC DSP Instruction Set Reference

Compute Field (Fixed-Point)

Compute Field (Floating-Point)

Table 7-13. Multifunction, Multiplier and Dual Add and Subtract

Syntax Opcode
(bits 22–20)

Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12, Rs=R11-8 – R15-12 110

Fm=F3-0 * F7-4, Fa=F11-8 + F15-12, Fs=F11-8 – F15-12 111

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 10 Rs Rm Ra RxmM Rym Rxa Rya

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 11 Fs Fm Fa Fxm Fym Fxa Fya

ADSP-21160 SHARC DSP Instruction Set Reference I-1

I INDEX

Numerics
16-bit floating-point data, 7-91, 7-92

A
ABS computation, 7-19, 7-30, 7-31,

7-35
Absolute address, 2-14
Access between DM or PM & a

universal register, 3-9, 5-2, 5-5
Access between DM or PM & the

register file, 3-14
Addition computation, 7-7, 7-28
Addition with borrow computation,

7-15
Addition with carry computation, 7-9,

7-14
Addition/Division ((Rx + Ry)/2)

computation, 7-11
Adobe Acrobat, 1-8
Ai values and MR registers, 7-62
ALU Carry (AC) bit, 2-18
ALU Operations, 7-3
ALU operations, 7-3
ALU Overflow (AV) bit, 2-18
ALU saturation, 7-7, 7-8, 7-9, 7-10,

7-14, 7-15, 7-16, 7-17, 7-18, 7-19,
7-41

AN flag, 7-12, 7-33
Analog Devices product information,

1-6
AND (logical) computation, 7-21
ASHIFT computation, 7-68, 7-69
Assembler, 1-5
Audience (intended), 1-1
AZ flag, 7-12, 7-33

B
BCLR computation, 7-71
Bit manipulation, 6-2
Bit test flag (BTF), 6-2
BITREV instruction, 6-5
BSET computation, 7-72
BTGL computation, 7-73
BTST computation, 7-74
Bus Exchange, 2-10
Bus master (Bm) condition, 2-19

C
Cable for information, 1-7
Cache flush, 6-9
Circular Buffering Enable (CBUFEN)

bit, 3-28, 6-5
Cjump/Rframe (Type 24), 2-8, 6-12
CLIP computation, 7-27, 7-51

INDEX

I-2 ADSP-21160 SHARC DSP Instruction Set Reference

COMP computation, 7-12, 7-33
Compiler, 1-5
Complement (Fn = –Fx)

computation, 7-34
Complement (Rn = –Rx)

computation, 7-18
Complementary Registers, 2-26
COMPU computation, 7-13
Computation

ABS, 7-19, 7-30, 7-31, 7-35
Addition, 7-7, 7-28
Addition with borrow, 7-15
Addition with carry, 7-9, 7-14
Addition/Division ((Rx + Ry)/2),

7-11
AND (logical), 7-21
ASHIFT, 7-68, 7-69
BCLR, 7-71
BSET, 7-72
BTGL, 7-73
BTST, 7-74
CLIP, 7-27, 7-51
COMP, 7-12, 7-33
Complement (Fn = –Fx), 7-34
Complement (Rn = –Rx), 7-18
COMPU, 7-13
COPYSIGN, 7-48
Decrement (Rn = Rx – 1), 7-17
Division (Fx + Fy)/2, 7-32
EXP, 7-87, 7-88
FDEP, 7-75, 7-77, 7-79, 7-81
FEXT, 7-83, 7-85
FIX, 7-41
FLOAT, 7-43

FPACK, 7-91
FUNPACK, 7-92
Increment, 7-16
LEFTO, 7-90
LEFTZ, 7-89
LOGB, 7-40
LSHIFT, 7-66, 7-67
MANT, 7-39
MAX, 7-26, 7-50
MIN, 7-25, 7-49
Multiplication, 7-56, 7-64
Multiplication/addition (Rn =

MRF + Rx * Ry mod2), 7-57
Multiplication/subtraction (Rn =

MRF – Rx * Ry mod2), 7-58
NOT, 7-24
OR (logical), 7-22
PASS, 7-20, 7-36
RECIPS, 7-44
RND, 7-37, 7-60
ROT, 7-70
RSQRTS, 7-46
SAT, 7-59
SCALB, 7-38
Subtraction, 7-8
Subtraction (Fn = Fx – Fy), 7-29
Subtraction with borrow, 7-10
Transfer (MR = RN/Rn = MR),

7-62
TRUNC, 7-41
XOR (logical), 7-23
Zero (MRF = 0), 7-61

Compute (Type 2), 2-2, 3-7

ADSP-21160 SHARC DSP Instruction Set Reference I-3

INDEX

Compute and Move/Modify
Summary, 2-2

Compute field, 7-2
Compute operations, 7-1
Compute/dreg«···»DM/dreg«···»P

M (Type 1), 2-2, 3-3
Compute/dreg«···»DM|PM,

immediate modify (Type 4),
2-3, 3-14

Compute/modify (Type 7), 2-3,
3-28

Compute/ureg«···»DM|PM,
register modify (Type 3), 2-2,
3-9

Compute/ureg«···»ureg (Type 5),
2-3, 3-19

Condition & Termination Codes
(IF & DO UNTIL) , 2-18

Condition codes, 2-18
Conditional

Conditions list, 2-18
Conditional Call, 4-3, 4-8
Conditional Instructions, 1-3, 3-7
Conditional Jump, 4-3, 4-8, 4-15
Conditional loop (DO), 4-28
Contact information, 1-7
Conventions, 1-8
COPYSIGN computation, 7-48
Current loop counter

(CURLCNTR), 4-26
Customer support, 1-7

D
DAGs, 2-10

Registers, 2-15, 6-5
Data Register File, 2-9, 3-1, 4-1,

7-94
Decrement (Rn = Rx – 1)

computation, 7-17
Delayed branch (DB), 4-3, 4-8,

4-22
Development tools, 1-3
Direct Addressing, 2-14, 5-2
Direct Jump|Call (Type 8), 2-4, 4-3
Division (Fx + Fy)/2 computation,

7-32
Do Until (Type 13), 2-6, 4-28
Do Until Counter Expired

(Type 12), 2-6, 4-26
DSP

Defined, 1-1

E
E-mail for information, 1-7
Equals (EQ) condition, 2-18
EXP computation, 7-87, 7-88

F
False always (FOREVER) Do/Until

condition, 2-19
FAX for information, 1-6
FDEP computation, 7-75, 7-77,

7-79, 7-81
FEXT computation, 7-83, 7-85
Field alignment, 7-75, 7-79, 7-83
File Transfer Protocol (FTP) site,

1-6
FIX computation, 7-41

INDEX

I-4 ADSP-21160 SHARC DSP Instruction Set Reference

Fixed point ALU operations , 7-4
Fixed-point multiplier operations ,

7-53
Flag input (FLAGx_IN) conditions,

2-19
FLOAT computation, 7-43
Floating-point ALU operations ,

7-5
Floating-point multiplier operations

, 7-53
FPACK computation, 7-91
FUNPACK computation, 7-92

G
Greater or Equals (GE) condition,

2-18
Greater Than (GT) condition, 2-18

H
Hypertext links, 1-9

I
I Register Modify/bit-reverse

(Type 19), 2-8, 6-5
I/O and Multiplier Registers , 2-9
Idle (Type 22), 2-8, 6-11
IMASKP register, 4-21
Immediate data ···»DM|PM

(Type 16), 2-7
Immediate data ···»ureg (Type 17),

2-7
Immediate data···»DM|PM

(Type 16), 5-9

Immediate data···»ureg (Type 17),
5-12

Immediate Move Summary, 2-6
Immediate shift, 3-23, 7-64
Immediate Shift/dreg«···»DM|PM

(Type 6), 2-3, 3-23
Increment (Rn = Rx + 1)

computation, 7-16
Indirect addressing, 2-15, 5-9
Indirect Jump or

Compute/dreg«···»DM
(Type 10), 2-5, 4-15

Indirect Jump|Call / Compute
(Type 9), 2-5, 4-8

Instruction
(Type 01)

Compute/dreg«···»DM/dreg«·
··»PM, 2-2, 3-3

(Type 02) Compute, 2-2, 3-7
(Type 03)

Compute/ureg«···»DM|PM,
register modify, 2-2, 3-9

(Type 04)
Compute/dreg«···»DM|PM,
immediate modify, 2-3, 3-14

(Type 05)
Compute/ureg«···»ureg, 2-3,
3-19

(Type 06) Immediate
Shift/dreg«···»DM|PM, 2-3,
3-23

(Type 07) Compute/modify, 2-3,
3-28

ADSP-21160 SHARC DSP Instruction Set Reference I-5

INDEX

(Type 08) Direct Jump|Call,
2-4, 4-3

(Type 09) Indirect Jump|Call /
Compute, 2-5, 4-8

(Type 10) Indirect Jump or
Compute/dreg«···»DM, 2-5,
4-15

(Type 11) Return From
Subroutine|Interrupt/Compute
, 2-5, 4-21

(Type 12) Do Until Counter
Expired, 2-6, 4-26

(Type 13) Do Until, 2-6, 4-28
(Type 14) Ureg«···»DM|PM

(direct addressing), 2-6, 5-2
(Type 15) Ureg«···»DM|PM

(indirect addressing), 2-6, 5-5
(Type 16) Immediate data

···»DM|PM, 2-7
(Type 16) Immediate

data···»DM|PM, 5-9
(Type 17) Immediate data

···»ureg, 2-7
(Type 17) Immediate

data···»ureg, 5-12
(Type 18) System Register Bit

Manipulation, 2-7, 6-2
(Type 19) I Register

Modify/bit-reverse, 2-8, 6-5
(Type 20) Push|Pop Stacks/Flush

Cache, 2-8, 6-8
(Type 21) Nop, 2-8, 6-10
(Type 22) Idle, 2-8, 6-11

(Type 24) Cjump/Rframe, 2-8,
6-12

Instruction Cache, 6-8
Instruction Set Notation , 2-16
Instructions, 1-9

Group I (Compute & Move), 3-1
Group II (Program Flow

Control), 4-1
Group III (Immediate Move), 5-1
Group IV (Miscellaneous), 6-1

IOP registers, 2-12
ISR programming issues, 4-9, 4-21

L
LCNTR register, 4-26, 4-27
LEFTO computation, 7-90
LEFTZ computation, 7-89
Less or Equals (LE) condition, 2-18
Less than (LT) condition, 2-18
Linker, 1-5
Loader, 1-5
LOGB computation, 7-40
Loop

Termination, 2-18
Loop abort (LA), 4-3, 4-8
Loop counter, 2-9

Setup, 4-26
Stack, 4-26

Loop counter expired (LCE)
condition, 2-19

Loop reentry (LR), 4-22
Loop stack, 4-3, 4-8, 4-28, 6-9
LSHIFT computation, 7-66, 7-67

INDEX

I-6 ADSP-21160 SHARC DSP Instruction Set Reference

M
Mailing address for information,

1-7
MANT computation, 7-39
Mantissa, 7-39
Map 1 & 2 registers, 2-26, 2-27,

2-30, 2-31
MAX computation, 7-26
MAX computation, 7-50
Memory Addressing Summary,

2-14
MIN computation, 7-25, 7-49
Miscellaneous Instructions

Summary, 2-7
Mode 1 & 2options and opcodes,

7-54, 7-55
Modify/update an I register with a

DAG, 3-28, 6-5
MR register transfers, 7-1
MR registers, 3-1, 4-1
Multifunction instructions, 7-1,

7-93
Registers, 7-94

Multifunction, Multiplier & ALU ,
7-98

Multifunction, Multiplier & Dual
Add & Subtract , 7-101

Multifunction, Parallel Add &
Subtract , 7-95

Multiplication (Fn = Fx * Fy)
computation, 7-64

Multiplication computation, 7-56

Multiplication/addition (Rn = MRF
+ Rx * Ry mod2) computation,
7-57

Multiplication/subtraction (Rn =
MRF – Rx * Ry mod2)
computation, 7-58

Multiplier
Operations, 7-51
Registers, 2-14

Multiplier Overflow (MV) bit, 2-18
Multiplier Signed (MS) bit, 2-18
Multiply-accumulate, 7-98

N
Nop (Type 21), 2-8, 6-10, 6-11
NOT computation, 7-24
Not Equal (NE), 2-18
Notation, 2-16

O
Opcode Acronyms , 2-22
OR (logical) computation, 7-22
Overflow (See ALU, Multiplier, or

Shifter)

P
Parallel

Add & Subtract, 7-95
Multiplier & ALU, 7-98
Multiplier With Add & Subtract,

7-101
Parallel accesses to data and program

memory, 3-3
PASS computation, 7-20, 7-36

ADSP-21160 SHARC DSP Instruction Set Reference I-7

INDEX

PC stack, 4-3, 4-8, 4-28, 6-9
PC-relative address, 2-14
Post-modify, 2-15
Pre-modify, 2-15
Program Flow Control Summary,

2-4
Program Sequencer, 2-9
Programming information, 1-1
Push|Pop Stacks/Flush Cache

(Type 20), 2-8, 6-8

R
RECIPS computation, 7-44
Reference Notation Summary,

2-16, 2-22
Register codes , 2-30, 2-31
Register names, 1-8
Register Types Summary, 2-9
Registers for multifunction

computations, 7-94
Related documents, 1-8
Return from a subroutine (RTS),

4-4, 4-9, 4-21, 4-22
Return from an interrupt service

routine (RTI), 4-21
Return From

Subroutine|Interrupt/Compute
(Type 11), 2-5, 4-21

RND computation, 7-37, 7-60
ROT computation, 7-70
RSQRTS computation, 7-46

S
SAT computation, 7-59

Saturation mode, 7-7, 7-8, 7-9,
7-10, 7-14, 7-15, 7-16, 7-17,
7-18, 7-19, 7-40, 7-41

SCALB computation, 7-38
Shifter immediate operation, 7-64
Shifter Operations, 7-64
Shifter operations, 7-64
Shifter operations , 7-65
Shifter Overflow (SV) bit, 2-18
Shifter Zero (SZ) bit, 2-18
Short float data format, 7-91, 7-92
Status stack, 4-21, 6-8
Subtraction (Fn = Fx – Fy)

computation, 7-29
Subtraction computation, 7-8
Subtraction with borrow

computation, 7-10
Support (technical or customer),

1-7
Swap between universal registers,

3-19
System Register Bit Manipulation

(Type 18), 2-7, 6-2
System Registers, 2-11

T
Technical support, 1-7
Telex for information, 1-7
Termination codes

(See Condition codes and Loop
termination)

Termination condition, 4-26, 4-28
Test Flag true (TF) condition, 2-19
Timer, 2-10

INDEX

I-8 ADSP-21160 SHARC DSP Instruction Set Reference

Transfer (MR = RN/Rn = MR)
computation, 7-62

Transfer between universal registers,
3-19

True always (TRUE) if condition,
2-19

TRUNC computation, 7-41

U
Underflow, 7-91, 7-92
Underflow (See Multiplier)
Universal registers, 2-9, 2-26, 2-30,

2-31, 5-2, 5-5
Update an I register with an M

register, 3-28
Ureg«···»DM|PM (direct

addressing) (Type 14), 2-6, 5-2
Ureg«···»DM|PM (indirect

addressing) (Type 15), 2-6, 5-5

V
Valid data registers for input

operands , 7-98
Valid sources of the input operands,

7-101
VisualDSP, 1-3

W
Web site, 1-6
Write 32-bit immediate data to DM

or PM, 5-9
Write 32-bit immediate data to

register, 5-12

X
XOR (logical) computation, 7-23

Z
Zero (MRF = 0) computation, 7-61

	Introduction
	Purpose 1�1
	Audience 1�1
	Contents Overview 1�2
	Development Tools 1�3
	For Information About Analog Products 1�6
	For Technical or Customer Support 1�7
	What’s New in This Manual 1�7
	Related Documents 1�8
	Conventions 1�8
	Instruction Summary
	Chapter Overview 2�1
	Compute and Move/Modify Summary 2�2
	Program Flow Control Summary 2�4
	Immediate Move Summary 2�6
	Miscellaneous Operations Summary 2�7
	Register Types Summary 2�9
	Memory Addressing Summary 2�14
	Instruction Set Notation Summary 2�16
	Conditional Execution Codes Summary 2�18
	SISD/SIMD Conditional Testing Summary 2�20
	Instruction Opcode Acronym Summary 2�22
	Universal Register Codes 2�26
	ADSP-21160 Instruction Opcode Map 2�32
	Compute and Move
	Program Flow Control
	Immediate Move
	Miscellaneous Operations
	Computations Reference
	Compute Field 7�1
	Fixed-Point ALU Operations 7�4
	ALU Floating-Point Operations 7�5
	Multiplier Fixed-Point Operations 7�53
	Multiplier Floating-Point Operations 7�54
	Mod1 and Mod2 Modifiers 7�54
	Shifter Opcodes 7�64
	Operand Constraints 7�94
	1 Introduction
	Purpose
	Audience
	Contents Overview
	Development Tools
	For Information About Analog Products
	For Technical or Customer Support
	What’s New in This Manual
	Related Documents
	Conventions

	2 Instruction Summary
	Chapter Overview
	Compute and Move/Modify Summary
	Program Flow Control Summary
	Immediate Move Summary
	Miscellaneous Operations Summary
	Register Types Summary
	Memory Addressing Summary
	Instruction Set Notation Summary
	Conditional Execution Codes Summary
	SISD/SIMD Conditional Testing Summary
	Instruction Opcode Acronym Summary
	Universal Register Codes
	ADSP-21160 Instruction Opcode Map

	3 Compute and Move
	Group�I Instructions

	4 Program Flow Control
	Group�II Instructions

	5 Immediate Move
	Group�III Instructions

	6 Miscellaneous Operations
	Group�IV Instructions

	7 Computations Reference
	Compute Field
	ALU Operations
	Multiplier Operations
	Shifter Operations
	Multifunction Computations

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

