

FEATURES

Low power operation **5 V operation** 1.0 mA per channel max @ 0 Mbps to 2 Mbps 3.5 mA per channel max @ 10 Mbps 31 mA per channel max @ 90 Mbps **3 V operation** 0.7 mA per channel max @ 0 Mbps to 2 Mbps 2.1 mA per channel max @ 10 Mbps 20 mA per channel max @ 90 Mbps **Bidirectional communication** 3 V/5 V level translation High temperature operation: 105°C High data rate: dc to 90 Mbps (NRZ) Precise timing characteristics 2 ns max pulse width distortion 2 ns max channel-to-channel matching High common-mode transient immunity: >25 kV/µs **Output enable function** Wide body 16-lead SOIC package, Pb-free models available Safety and regulatory approvals UL recognition: 2500 V rms for 1 minute per UL 1577 CSA component acceptance notice #5A VDE certificate of conformity DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01 DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000 VIORM = 560 V peak

APPLICATIONS

General-purpose multichannel isolation SPI® interface/data converter isolation RS-232/RS-422/RS-485 transceiver Industrial field bus isolation

Quad-Channel Digital Isolators ADuM1400/ADuM1401/ADuM1402

GENERAL DESCRIPTION

The ADuM140x¹ are 4-channel digital isolators based on Analog Devices' *i*Coupler[®] technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices.

By avoiding the use of LEDs and photodiodes, *i*Coupler devices remove the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple *i*Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discretes is eliminated with these *i*Coupler products. Furthermore, *i*Coupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates.

The ADuM140x isolators provide four independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide). All models operate with the supply voltage on either side ranging from 2.7 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier. In addition, the ADuM140x provides low pulse width distortion (<2 ns for CRW grade) and tight channel-to-channel matching (<2 ns for CRW grade). Unlike other optocoupler alternatives, the ADuM140x isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions.

¹ Protected by U.S. Patents 5,952,849 and 6,291,907.

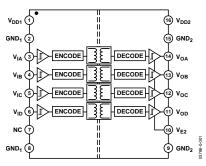


Figure 1. ADuM1400 Functional Block Diagram

Rev. C

FUNCTIONAL BLOCK DIAGRAMS

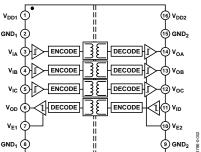


Figure 2. ADuM1401 Functional Block Diagram

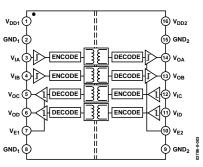


Figure 3. ADuM1402 Functional Block Diagram

Information furnished by Analog Devices is believed to be accurate and reliable.However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.One T
Tel: 7
Fax: 7

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2005 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Specifications
Electrical Characteristics—5 V Operation
Electrical Characteristics—3 V Operation
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V Operation
Package Characteristics
Regulatory Information
Insulation and Safety-Related Specifications12
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation Characteristics
Recommended Operating Conditions
Absolute Maximum Ratings14

REVISION HISTORY

5/05—Rev. B to Rev. C	
Changes to Format	Universal
Changes to Figure 2	1
Changes to Table 3	8
Changes to Table 6	
Changes to Ordering Guide	

6/04—Rev. A to Rev. B

Changes to Format	Universal
Changes to Features	1
Changes to Electrical Characteristics-5 V Operation.	
Changes to Electrical Characteristics-3 V Operation.	5
Changes to Electrical Characteristics—Mixed 5 V/3 V	or
3 V/5 V Operation	7
Changes to DIN EN 60747-5-2 (VDE 0884 Part 2)	
Insulation Characteristics Title	11
Changes to the Ordering Guide	

5/04—Rev. 0 to Rev. A

Updated Format	Universal
Changes to the Features	1
Changes to Table 7 and Table 8	14
Changes to Table 9	15
Changes to the DC Correctness and Magnetic Field	Immunity
Section	
Changes to the Power Consumption Section	
Changes to the Ordering Guide	

9/03—Revision 0: Initial Version.

ESD Caution14
Pin Configurations and Function Descriptions
Typical Performance Characteristics
Application Information19
PC Board Layout
Propagation Delay-Related Parameters19
DC Correctness and Magnetic Field Immunity19
Power Consumption
Outline Dimensions
Ordering Guide

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION¹

 $4.5 \text{ V} \le V_{DD1} \le 5.5 \text{ V}$, $4.5 \text{ V} \le V_{DD2} \le 5.5 \text{ V}$; all min/max specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $T_A = 25^{\circ}$ C, $V_{DD1} = V_{DD2} = 5 \text{ V}$.

Table 1. Parameter	Symbol	Min	Тур	Мах	Unit	Test Conditions
DC SPECIFICATIONS	Symbol		чур	IVIAA	onic	
Input Supply Current per Channel, Quiescent	I _{DDI (Q)}		0.50	0.53	mA	
Output Supply Current per Channel, Quescent			0.19	0.21	mA	
ADuM1400, Total Supply Current, Four Channels ²	IDDO (Q)		0.19	0.21		
DC to 2 Mbps						
V _{DD1} Supply Current	I _{DD1 (O)}		2.2	2.8	mA	DC to 1 MHz logic signal freq.
V _{DD} Supply Current			0.9	2.0 1.4	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)	IDD2 (Q)		0.9	1.4		
V _{DD1} Supply Current			8.6	10.6	mA	5 MHz logic signal freq.
V _{DD2} Supply Current	DD1 (10)		8.0 2.6	3.5	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)	DD2 (10)		2.0	5.5		5 Miliziogie signalitieq.
V _{DD1} Supply Current			76	100	mA	45 MHz logic signal freq.
V _{DD1} Supply Current	DD1 (90)		21	25		45 MHz logic signal freq.
ADuM1401, Total Supply Current, Four Channels ²	DD2 (90)		21	25	mA	45 MHz logic signal freq.
DC to 2 Mbps						
V _{DD1} Supply Current	1		10	2.4	mA	DC to 1 MHz logic signal freq.
	DD1 (Q)		1.8 1.2	2.4 1.8	mA	DC to 1 MHz logic signal freq.
V _{DD2} Supply Current 10 Mbps (BRW and CRW Grades Only)	DD2 (Q)		1.2	1.0	ma	DC to T MHZ logic signal freq.
V _{DD1} Supply Current	1		7.1	9.0	mA	E MHz logic signal frog
	DD1 (10)		7.1 4.1	9.0 5.0		5 MHz logic signal freq.
V _{DD2} Supply Current	DD2 (10)		4.1	5.0	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)			62	07		
V _{DD1} Supply Current	DD1 (90)		62 25	82	mA	45 MHz logic signal freq.
V _{DD2} Supply Current	DD2 (90)		35	43	mA	45 MHz logic signal freq.
ADuM1402, Total Supply Current, Four Channels ²						
DC to 2 Mbps			1 5	2.1		
V _{DD1} or V _{DD2} Supply Current	I _{DD1 (Q)} , I _{DD2 (Q)}		1.5	2.1	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)			5.6	7.0		
V _{DD1} or V _{DD2} Supply Current	IDD1 (10), IDD2 (10)		5.6	7.0	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)			10	<i>(</i> 2)		
V _{DD1} or V _{DD2} Supply Current	IDD1 (90), IDD2 (90)		49	62	mA	45 MHz logic signal freq.
For All Models		10				
Input Currents	IIA, IIB, IIC,	-10	+0.01	+10	μΑ	$0 \leq V_{IA}, V_{IB}, V_{IC}, V_{ID} \leq V_{DD1} \text{ or } V_{DD2},$
Logic High Input Threshold	I_{ID} , I_{E1} , I_{E2}	2.0			v	$0 \leq V_{E1}, V_{E2} \leq V_{DD1} \text{ or } V_{DD2}$
	VIH, VEH	2.0		0.0		
Logic Low Input Threshold	VIL, VEL	V V 01	5.0	0.8	V V	
Logic High Output Voltages	Voah, Vobh, Voch, Vodh	$V_{DD1}, V_{DD2} - 0.1$				$I_{Ox} = -20 \ \mu A, V_{Ix} = V_{IxH}$
Logis Low Output Voltages		V _{DD1} , V _{DD2} – 0.4		0.1	V	$I_{0x} = -4 \text{ mA}, V_{1x} = V_{1xH}$
Logic Low Output Voltages	V _{OAL} , V _{OBL} , Vocl, Vodl		0.0	0.1	V	$I_{Ox} = 20 \ \mu A, V_{Ix} = V_{IxL}$
	VUCL, VUDL		0.04	0.1	V	$I_{Ox} = 400 \ \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$

Parameter	Symbol	Min	Тур	Мах	Unit	Test Conditions
SWITCHING SPECIFICATIONS						
ADuM140xARW						
Minimum Pulse Width ³	PW			1000	ns	C _L = 15 pF, CMOS signal levels
Maximum Data Rate ⁴		1			Mbps	C _L = 15 pF, CMOS signal levels
Propagation Delay ⁵	tphl, tplh	50	65	100	ns	C _L = 15 pF, CMOS signal level
Pulse Width Distortion, $ t_{PLH} - t_{PHL} ^5$	PWD			40	ns	C _L = 15 pF, CMOS signal level
Propagation Delay Skew ⁶	t _{РSK}			50	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Channel-to-Channel Matching ⁷	t _{PSKCD/OD}			50	ns	C _L = 15 pF, CMOS signal level
ADuM140xBRW						
Minimum Pulse Width ³	PW			100	ns	C _L = 15 pF, CMOS signal level
Maximum Data Rate ⁴		10			Mbps	C _L = 15 pF, CMOS signal level
Propagation Delay ⁵	tphl, tplh	20	32	50	ns	C _L = 15 pF, CMOS signal level
Pulse Width Distortion, $ t_{PLH} - t_{PHL} ^5$	PWD			3	ns	C _L = 15 pF, CMOS signal level
Change vs. Temperature			5		ps/°C	C _L = 15 pF, CMOS signal level
Propagation Delay Skew ⁶	t _{РSK}			15	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Channel-to-Channel Matching, Codirectional Channels ⁷	t pskcd			3	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Channel-to-Channel Matching, Opposing-Directional Channels ⁷	t _{PSKOD}			6	ns	$C_L = 15 \text{ pF}$, CMOS signal level
ADuM140xCRW						
Minimum Pulse Width ³	PW		8.3	11.1	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Maximum Data Rate⁴		90	120		Mbps	$C_L = 15 \text{ pF}$, CMOS signal leve
Propagation Delay ⁵	t _{PHL} , t _{PLH}	18	27	32	ns	$C_L = 15 \text{ pF}$, CMOS signal leve
Pulse Width Distortion, $ t_{PLH} - t_{PHL} ^{5}$	PWD		0.5	2	ns	$C_L = 15 \text{ pF}$, CMOS signal leve
Change vs. Temperature			3		ps/°C	$C_L = 15 \text{ pF}$, CMOS signal level
Propagation Delay Skew ⁶	tрsк			10	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Channel-to-Channel Matching, Codirectional Channels ⁷	t _{pskcd}			2	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Channel-to-Channel Matching, Opposing-Directional Channels ⁷	t pskod			5	ns	$C_L = 15 \text{ pF}$, CMOS signal leve
For All Models						
Output Disable Propagation Delay (High/Low-to-High Impedance)	t _{PHZ} , t _{PLH}		6	8	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Output Enable Propagation Delay (High Impedance to High/Low)	tpzн, tpzl		6	8	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Output Rise/Fall Time (10% to 90%)	t _R /t _F		2.5		ns	$C_L = 15 \text{ pF}$, CMOS signal leve
Common-Mode Transient Immunity at Logic High Output ⁸	CM _H	25	35		kV∕µs	$V_{lx} = V_{DD1}/V_{DD2}$, $V_{CM} = 1000 V$, transient magnitude = 800 V
Common-Mode Transient Immunity at Logic Low Output ⁸	CM∟	25	35		kV∕µs	$V_{lx} = 0 V, V_{CM} = 1000 V,$ transient magnitude = 800 V
Refresh Rate	fr		1.2		Mbps	-
Input Dynamic Supply Current per Channel ⁹	IDDI (D)		0.19		mA/Mbps	
Output Dynamic Supply Current per Channel ⁹	I _{DDO (D)}		0.05		mA/Mbps	

¹ All voltages are relative to their respective ground.

- ² The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 14 for total I_{DD1} and I_{DD2} supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.
- ³ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
- ⁴ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
- ⁵ t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{Ox} signal. t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_{Ix} signal to the 50% level of the rising edge of the V_{Ox} signal.
- ⁶ t_{PSK} is the magnitude of the worst-case difference in t_{PHL} or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
- ⁷ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
- ⁸ CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ > 0.8 V_{DD2}. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
- ⁹ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—3 V OPERATION¹

 $2.7 \text{ V} \le V_{DD1} \le 3.6 \text{ V}, 2.7 \text{ V} \le V_{DD2} \le 3.6 \text{ V};$ all min/max specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $T_A = 25^{\circ}$ C, $V_{DD1} = V_{DD2} = 3.0 \text{ V}.$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS			• 7 P	max	•	
Input Supply Current per Channel, Quiescent	DDI (Q)		0.26	0.31	mA	
Output Supply Current per Channel, Quiescent			0.11	0.14	mA	
ADuM1400, Total Supply Current, Four Channels ²	1000 (Q)		0.11	0.11		
DC to 2 Mbps						
V _{DD1} Supply Current	IDD1 (Q)		1.2	1.9	mA	DC to 1 MHz logic signal freq
V _{DD2} Supply Current			0.5	0.9	mA	DC to 1 MHz logic signal freq
10 Mbps (BRW and CRW Grades Only)	1002 (Q)		0.5	0.5		
V_{DD1} Supply Current	I _{DD1 (10)}		4.5	6.5	mA	5 MHz logic signal freq.
V _{DD2} Supply Current	IDD2 (10)		1.4	2.0	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)	1002 (10)			2.0		s with logic signal freq.
V _{DD1} Supply Current	IDD1 (90)		42	65	mA	45 MHz logic signal freq.
V _{DD2} Supply Current			11	15	mA	45 MHz logic signal freq.
ADuM1401, Total Supply Current, Four Channels ²	I _{DD2} (90)			15	шл	
DC to 2 Mbps						
V _{DD1} Supply Current	laat ta		1.0	1.6	mA	DC to 1 MHz logic signal free
V _{DD2} Supply Current	DD1 (Q)		0.7	1.0	mA	DC to 1 MHz logic signal freq
	I _{DD2 (Q)}		0.7	1.2	IIIA	
10 Mbps (BRW and CRW Grades Only)			3.7	5.4	mA	E MHz logic signal frog
V _{DD1} Supply Current	DD1 (10)				mA	5 MHz logic signal freq.
V _{DD2} Supply Current	DD2 (10)		2.2	3.0	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)			24	52		
	DD1 (90)		34	52	mA	45 MHz logic signal freq.
V _{DD2} Supply Current	DD2 (90)		19	27	mA	45 MHz logic signal freq.
ADuM1402, Total Supply Current, Four Channels ²						
DC to 2 Mbps						
V _{DD1} or V _{DD2} Supply Current	IDD1 (Q), IDD2 (Q)		0.9	1.5	mA	DC to 1 MHz logic signal free
10 Mbps (BRW and CRW Grades Only)					_	
V _{DD1} or V _{DD2} Supply Current	IDD1 (10), IDD2 (10)		3.0	4.2	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
V _{DD1} or V _{DD2} Supply Current	IDD1 (90), IDD2 (90)		27	39	mA	45 MHz logic signal freq.
For All Models						
Input Currents	I_{IA} , I_{IB} , I_{IC} ,	-10	+0.01	+10	μΑ	$0 \le V_{IA}, V_{IB}, V_{IC}, V_{ID} \le V_{DD1}$ or
	lid, le1, le2					$V_{DD2}, 0 \leq V_{E1}, V_{E2} \leq V_{DD1} \text{ or } V_{DD2}$
Logic High Input Threshold	VIH, VEH	1.6			V	
Logic Low Input Threshold	V _{IL} , V _{EL}			0.4	V	
Logic High Output Voltages	Voah, Vobh, Voch, Vodh	V _{DD1} , V _{DD2} – 0.1	3.0		V	$I_{\text{Ox}} = -20 \ \mu\text{A}, V_{\text{Ix}} = V_{\text{IxH}}$
		$V_{DD1}, V_{DD2} - 0.4$	2.8		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	VOAL, VOBL,		0.0	0.1	V	$I_{Ox} = 20 \ \mu A$, $V_{Ix} = V_{IxL}$
	Vocl, Vodl		0.04	0.1	V	$I_{Ox} = 400 \ \mu\text{A}, \ V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
SWITCHING SPECIFICATIONS						
ADuM140xARW						
Minimum Pulse Width ³	PW			1000		$C_L = 15 \text{ pF}$, CMOS signal leve
Maximum Data Rate ⁴		1			Mbps	$C_L = 15 \text{ pF}$, CMOS signal leve
Propagation Delay ⁵	tphl, tplh	50	75	100	ns	$C_L = 15 \text{ pF}$, CMOS signal leve
Pulse Width Distortion, $ t_{PLH} - t_{PHL} ^5$	PWD			40	ns	$C_L = 15 \text{ pF}$, CMOS signal leve
Propagation Delay Skew ⁶	tрsк			50	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Channel-to-Channel Matching ⁷	tpskcd/od			50	ns	$C_L = 15 \text{ pF}$, CMOS signal level

Parameter	Symbol	Min	Тур	Мах	Unit	Test Conditions
ADuM140xBRW			/I	-		
Minimum Pulse Width ³	PW			100	ns	C _L = 15 pF, CMOS signal levels
Maximum Data Rate⁴		10			Mbps	$C_{L} = 15 \text{ pF}$, CMOS signal levels
Propagation Delay⁵	tphl, tplh	20	38	50	ns	$C_{L} = 15 \text{ pF}$, CMOS signal levels
Pulse Width Distortion, t _{PLH} – t _{PHL} ⁵	PWD			3	ns	C _L = 15 pF, CMOS signal levels
Change vs. Temperature			5		ps/°C	C _L = 15 pF, CMOS signal levels
Propagation Delay Skew ⁶	t _{PSK}			22	ns	C _L = 15 pF, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels ⁷	t pskcd			3	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ⁷	t _{PSKOD}			6	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
ADuM140xCRW						
Minimum Pulse Width ³	PW		8.3	11.1	ns	C _L = 15 pF, CMOS signal levels
Maximum Data Rate ⁴		90	120		Mbps	C _L = 15 pF, CMOS signal levels
Propagation Delay ⁵	tphl, tplh	20	34	45	ns	C _L = 15 pF, CMOS signal levels
Pulse Width Distortion, tplh – tphl ⁵	PWD		0.5	2	ns	C _L = 15 pF, CMOS signal levels
Change vs. Temperature			3		ps/°C	C _L = 15 pF, CMOS signal levels
Propagation Delay Skew ⁶	t _{PSK}			16	ns	C _L = 15 pF, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels ⁷	t pskcd			2	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ⁷	t pskod			5	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
For All Models						
Output Disable Propagation Delay (High/Low-to-High Impedance)	tphz, tplh		6	8	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Output Enable Propagation Delay (High Impedance to High/Low)	tpzh, tpzl		6	8	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Output Rise/Fall Time (10% to 90%)	t _R /t _F		3		ns	C _L = 15 pF, CMOS signal levels
Common-Mode Transient Immunity at Logic High Output ⁸	CM _H	25	35		kV/μs	$V_{lx} = V_{DD1}/V_{DD2}, V_{CM} = 1000 V,$ transient magnitude = 800 V
Common-Mode Transient Immunity at Logic Low Output ⁸	CM∟	25	35		kV∕µs	$V_{lx} = 0 V$, $V_{CM} = 1000 V$, transient magnitude = 800 V
Refresh Rate	fr		1.1		Mbps	
Input Dynamic Supply Current per Channel ⁹	Iddi (d)		0.10		mA/Mbps	
Output Dynamic Supply Current per Channel ⁹	IDDO (D)		0.03		mA/Mbps	

¹ All voltages are relative to their respective ground.

² The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 14 for total l_{DD1} and l_{DD2} supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.

³ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.

⁴ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.

⁵ t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_k signal to the 50% level of the falling edge of the V_{ox} signal. t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_k signal to the 50% level of the rising edge of the V_{ox} signal.

⁶ t_{PSK} is the magnitude of the worst-case difference in t_{PHL} or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.

⁷ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.

⁸ CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ > 0.8 V_{DD2}. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.

⁹ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION¹

5 V/3 V operation: $4.5 \text{ V} \le \text{V}_{\text{DD1}} \le 5.5 \text{ V}$, $2.7 \text{ V} \le \text{V}_{\text{DD2}} \le 3.6 \text{ V}$; 3 V/5 V operation: $2.7 \text{ V} \le \text{V}_{\text{DD1}} \le 3.6 \text{ V}$, $4.5 \text{ V} \le \text{V}_{\text{DD2}} \le 5.5 \text{ V}$; all min/max specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $T_A = 25^{\circ}\text{C}$; $V_{\text{DD1}} = 3.0 \text{ V}$, $V_{\text{DD2}} = 5 \text{ V}$; or $V_{\text{DD2}} = 5 \text{ V}$; or $V_{\text{DD2}} = 3.0 \text{ V}$.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS			<i>,</i> ,			
Input Supply Current per Channel, Quiescent	I _{DDI (Q)}					
5 V/3 V Operation	-001 (Q)		0.50	0.53	mA	
3 V/5 V Operation			0.26	0.31	mA	
Output Supply Current per Channel, Quiescent	IDDO (Q)					
5 V/3 V Operation	.000 (Q)		0.11	0.14	mA	
3 V/5 V Operation			0.19	0.21	mA	
ADuM1400, Total Supply Current, Four Channels	2		0.172	0.21		
DC to 2 Mbps						
V _{DD1} Supply Current	I _{DD1 (Q)}					
5 V/3 V Operation	1001 (Q)		2.2	2.8	mA	DC to 1 MHz logic signal freq
3 V/5 V Operation			1.2	1.9	mA	DC to 1 MHz logic signal freq
V _{DD2} Supply Current	IDD2 (Q)		1.2	1.2		
5 V/3 V Operation	1002 (Q)		0.5	0.9	mA	DC to 1 MHz logic signal freq
3 V/5 V Operation			0.9	1.4	mA	DC to 1 MHz logic signal freq
10 Mbps (BRW and CRW Grades Only)			0.9	1.4	ША	De to T MHz logic signal freq
V _{DD1} Supply Current	lass we					
5 V/3 V Operation	DD1 (10)		8.6	10.6	mA	5 MHz logic signal freq.
3 V/5 V Operation			8.0 4.5	6.5		5 MHz logic signal freq.
V _{DD2} Supply Current			4.5	0.5	mA	5 MHz logic signal freq.
	DD2 (10)		1 4	2.0		
5 V/3 V Operation			1.4	2.0	mA	5 MHz logic signal freq.
3 V/5 V Operation			2.6	3.5	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						
V _{DD1} Supply Current	DD1 (90)		76	100		
5 V/3 V Operation			76	100	mA	45 MHz logic signal freq.
3 V/5 V Operation			42	65	mA	45 MHz logic signal freq.
V _{DD2} Supply Current	DD2 (90)			45		
5 V/3 V Operation			11	15	mA	45 MHz logic signal freq.
3 V/5 V Operation			21	25	mA	45 MHz logic signal freq.
ADuM1401, Total Supply Current, Four Channels	2					
DC to 2 Mbps						
V _{DD1} Supply Current	DD1 (Q)					
5 V/3 V Operation			1.8	2.4	mA	DC to 1 MHz logic signal freq
3 V/5 V Operation			1.0	1.6	mA	DC to 1 MHz logic signal freq
V _{DD2} Supply Current	DD2 (Q)					
5 V/3 V Operation			0.7	1.2	mA	DC to 1 MHz logic signal freq
3 V/5 V Operation			1.2	1.8	mA	DC to 1 MHz logic signal freq
10 Mbps (BRW and CRW Grades Only)						
V _{DD1} Supply Current	DD1 (10)					
5 V/3 V Operation			7.1	9.0	mA	5 MHz logic signal freq.
3 V/5 V Operation			3.7	5.4	mA	5 MHz logic signal freq.
V _{DD2} Supply Current	I _{DD2} (10)					
5 V/3 V Operation			2.2	3.0	mA	5 MHz logic signal freq.
3 V/5 V Operation			4.1	5.0	mA	5 MHz logic signal freq.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
90 Mbps (CRW Grade Only)	Symbol		170	Шал	0	
V _{DD1} Supply Current	IDD1 (90)					
5 V/3 V Operation	1001 (90)		62	82	mA	45 MHz logic signal freq.
3 V/5 V Operation			34	52	mA	45 MHz logic signal freq.
V _{DD2} Supply Current	DD2 (90)		51	52		is with logic signal freq.
5 V/3 V Operation	1002 (90)		19	27	mA	45 MHz logic signal freq.
3 V/5 V Operation			35	43	mA	45 MHz logic signal freq.
ADuM1402, Total Supply Current, Four Channels ²			55	15		is this logic signal neq.
DC to 2 Mbps						
V _{DD1} Supply Current	DD1 (Q)					
5 V/3 V Operation			1.5	2.1	mA	DC to 1 MHz logic signal freq.
3 V/5 V Operation			0.9	1.5	mA	DC to 1 MHz logic signal freq.
V _{DD2} Supply Current	I _{DD2 (Q)}		012			2 e te :
5 V/3 V Operation	.002(0)		0.9	1.5	mA	DC to 1 MHz logic signal freq.
3 V/5 V Operation			1.5	2.1	mA	DC to 1 MHz logic signal freq.
10 Mbps (BRW and CRW Grades Only)						
V _{DD1} Supply Current	I _{DD1 (10)}					
5 V/3 V Operation	201(10)		5.6	7.0	mA	5 MHz logic signal freq.
3 V/5 V Operation			3.0	4.2	mA	5 MHz logic signal freq.
V _{DD2} Supply Current	DD2 (10)					5 5 1
5 V/3 V Operation			3.0	4.2	mA	5 MHz logic signal freq.
3 V/5 V Operation			5.6	7.0	mA	5 MHz logic signal freq.
90 Mbps (CRW Grade Only)						5 5 1
V _{DD1} Supply Current	I _{DD1 (90)}					
5 V/3 V Operation			49	62	mA	45 MHz logic signal freq.
3 V/5 V Operation			27	39	mA	45 MHz logic signal freq.
V _{DD2} Supply Current	I _{DD2 (90)}					
5 V/3 V Operation			27	39	mA	45 MHz logic signal freq.
3 V/5 V Operation			49	62	mA	45 MHz logic signal freq.
For All Models						
Input Currents	Iia, Iib, Iic, Iid, Ie1, Ie2	-10	+0.01	+10	μΑ	$ \begin{array}{l} 0 \leq V_{\text{IA}}, V_{\text{IB}}, V_{\text{IC}}, V_{\text{ID}} \leq V_{\text{DD1}} \text{ or} \\ V_{\text{DD2}}, 0 \leq V_{\text{E1}}, V_{\text{E2}} \leq V_{\text{DD1}} \text{ or } V_{\text{DD2}} \end{array} $
Logic High Input Threshold	VIH, VEH					
5 V/3 V Operation		2.0			V	
3 V/5 V Operation		1.6			V	
Logic Low Input Threshold	VIL, VEL					
5 V/3 V Operation				0.8	V	
3 V/5 V Operation				0.4	V	
Logic High Output Voltages	Vоан, Vовн,	$V_{DD1}, V_{DD2} - 0.1$	V_{DD1}, V_{DD2}		V	$I_{\text{Ox}} = -20 \; \mu\text{A}, V_{\text{Ix}} = V_{\text{IxH}}$
	Voch, Vodh	VDD1, VDD2-0.4	$V_{DD1}, V_{DD2} - 0.2$		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	VOAL, VOBL,		0.0	0.1	V	$I_{Ox}=20~\mu A,V_{Ix}=V_{IxL}$
	Vocl, Vodl		0.04	0.1	V	$I_{\text{Ox}} = 400 \; \mu\text{A}, V_{\text{Ix}} = V_{\text{IxL}}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
SWITCHING SPECIFICATIONS						
ADuM140xARW						
Minimum Pulse Width ³	PW			1000	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Maximum Data Rate⁴		1			Mbps	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay ⁵	tphl, tplh	50	70	100	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Pulse Width Distortion, $ t_{PLH} - t_{PHL} ^5$	PWD			40	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay Skew ⁶	t _{PSK}			50	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching ⁷	t _{PSKCD/OD}			50	ns	$C_L = 15 \text{ pF}$, CMOS signal levels

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
ADuM140xBRW						
Minimum Pulse Width ³	PW			100	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Maximum Data Rate ⁴		10			Mbps	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay ⁵	tphl, tplh	15	35	50	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Pulse Width Distortion, tplh – tphl ⁵	PWD			3	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Change vs. Temperature			5		ps/°C	$C_L = 15 \text{ pF}$, CMOS signal level
Propagation Delay Skew ⁶	t _{PSK}			22	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Channel-to-Channel Matching, Codirectional Channels ⁷	t pskcd			3	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Channel-to-Channel Matching, Opposing-Directional Channels ⁷	t _{PSKOD}			6	ns	$C_L = 15 \text{ pF}$, CMOS signal level
ADuM140xCRW						
Minimum Pulse Width ³	PW		8.3	11.1	ns	C _L = 15 pF, CMOS signal level
Maximum Data Rate ⁴		90	120		Mbps	C _L = 15 pF, CMOS signal level
Propagation Delay ⁵	tphl, tplh	20	30	40	ns	C _L = 15 pF, CMOS signal level
Pulse Width Distortion, t _{PLH} – t _{PHL} ⁵	PWD		0.5	2	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Change vs. Temperature			3		ps/°C	$C_L = 15 \text{ pF}$, CMOS signal level
Propagation Delay Skew ⁶	t _{PSK}			14	ns	C _L = 15 pF, CMOS signal level
Channel-to-Channel Matching, Codirectional Channels ⁷	t pskcd			2	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Channel-to-Channel Matching, Opposing-Directional Channels ⁷	t pskod			5	ns	$C_L = 15 \text{ pF}$, CMOS signal level
For All Models						
Output Disable Propagation Delay (High/Low to High Impedance)	tphz, tplh		6	8	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Output Enable Propagation Delay (High Impedance to High/Low)	t _{PZH} , t _{PZL}		6	8	ns	$C_L = 15 \text{ pF}$, CMOS signal level
Output Rise/Fall Time (10% to 90%)	t _R /t _f					$C_L = 15 \text{ pF}$, CMOS signal level
5 V/3 V Operation			3.0		ns	
3 V/5 V Operation			2.5		ns	
Common-Mode Transient Immunity at Logic High Output ⁸	CM _H	25	35		kV/μs	$V_{lx} = V_{DD1}/V_{DD2}$, $V_{CM} = 1000 V$ transient magnitude = 800 V
Common-Mode Transient Immunity at Logic Low Output ⁸	CM∟	25	35		kV/μs	$V_{lx} = 0 V$, $V_{CM} = 1000 V$, transient magnitude = 800 V
Refresh Rate	fr					
5 V/3 V Operation			1.2		Mbps	
3 V/5 V Operation			1.1		Mbps	
Input Dynamic Supply Current per Channel ⁹	I _{DDI (D)}					
5 V/3 V Operation			0.19		mA/Mbps	
3 V/5 V Operation			0.10		mA/Mbps	
Output Dynamic Supply Current per Channel ⁹	I _{DDI (D)}					
5 V/3 V Operation			0.03		mA/Mbps	
3 V/5 V Operation			0.05		mA/Mbps	

¹ All voltages are relative to their respective ground.

- ² The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 14 for total I_{DD1} and I_{DD2} supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.
- ³ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
- ⁴ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
- ⁵ t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{Ox} signal. t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_{Ix} signal to the 50% level of the rising edge of the V_{Ox} signal.
- ⁶ t_{PSK} is the magnitude of the worst-case difference in t_{PHL} or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
- ⁷ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
- ⁸ CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ > 0.8 V_{DD2}. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
- ⁹ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

PACKAGE CHARACTERISTICS

Table 4.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Resistance (Input-Output) ¹	RI-O		10 ¹²		Ω	
Capacitance (Input-Output) ¹	CI-O		2.2		рF	f = 1 MHz
Input Capacitance ²	Cı		4.0		pF	
IC Junction-to-Case Thermal Resistance, Side 1	θ」		33		°C/W	Thermocouple located
IC Junction-to-Case Thermal Resistance, Side 2	θιςο		28		°C/W	at center of package underside

¹ Device considered a 2-terminal device; Pins 1, 2, 3, 4, 5, 6, 7, and 8 shorted together and Pins 9, 10, 11, 12, 13, 14, 15, and 16 shorted together. ² Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM140x have been approved by the organizations listed in Table 5.

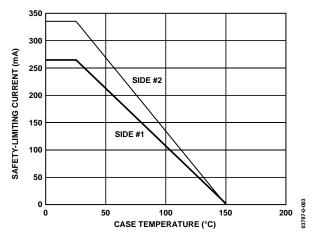
Table 5. UL1 VDE² CSA Recognized under 1577 Certified according to DIN EN 60747-5-2 (VDE 0884 Part 2): Approved under CSA Component 2003-01² component recognition program¹ Acceptance Notice #5A Double insulation, 2500 V rms Reinforced insulation per Basic insulation, 560 V peak CSA 60950-1-03 and IEC 60950-1, isolation voltage 400 V rms maximum working voltage Complies with DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01, DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000 Reinforced insulation, 560 V peak File E214100 File 2471900-4880-0001 File 205078

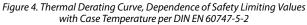
¹ In accordance with UL1577, each ADuM140x is proof tested by applying an insulation test voltage \geq 3000 V rms for 1 second (current leakage detection limit = 5 μ A). ² In accordance with DIN EN 60747-5-2, each ADuM140x is proof tested by applying an insulation test voltage \geq 1050 V peak for 1 second (partial discharge detection limit = 5 μ C). An"*" mark branded on the component designates DIN EN 60747-5-2 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 6.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1 minute duration
Minimum External Air Gap (Clearance)	L(I01)	7.7 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(I02)	8.1 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)


DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS


Table 7.

Description	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110			
For Rated Mains Voltage ≤ 150 V rms		I–IV	
For Rated Mains Voltage ≤ 300 V rms		1–111	
For Rated Mains Voltage ≤ 400 V rms		1–11	
Climatic Classification		40/105/21	
Pollution Degree (DIN VDE 0110, Table 1)		2	
Maximum Working Insulation Voltage	VIORM	560	V peak
Input to Output Test Voltage, Method b1	VPR	1050	V peak
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test, $t_m = 1$ sec, Partial Discharge < 5 pC			
Input to Output Test Voltage, Method a	VPR		
After Environmental Tests Subgroup 1		896	V peak
$V_{IORM} \times 1.6 = V_{PR}$, $t_m = 60$ sec, Partial Discharge < 5 pC			
After Input and/or Safety Test Subgroup 2/3		672	V peak
$V_{IORM} \times 1.2 = V_{PR}$, $t_m = 60$ sec, Partial Discharge < 5 pC			
Highest Allowable Overvoltage (Transient Overvoltage, $t_{TR} = 10$ sec)	VTR	4000	V peak
Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure; also see Figure 4)			
Case Temperature	Ts	150	°C
Side 1 Current	I _{S1}	265	mA
Side 2 Current	Is2	335	mA
Insulation Resistance at T_s , $V_{IO} = 500 \text{ V}$	Rs	>109	Ω

This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits.

The * marking on packages denotes DIN EN 60747-5-2 approval for 560 V peak working voltage.

RECOMMENDED OPERATING CONDITIONS

Table 8.

Parameter	Symbol	Min	Мах	Unit
Operating Temperature	T _A	-40	+105	°C
Supply Voltages ¹	V _{DD1} , V _{DD2}	2.7	5.5	V
Input Signal Rise and Fall Times			1.0	ms

¹ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

ABSOLUTE MAXIMUM RATINGS

Ambient temperature = 25°C, unless otherwise noted.

Table 9.

Parameter	Symbol	Min	Max	Unit
Storage Temperature	T _{ST}	-65	+150	°C
Ambient Operating Temperature	T _A	-40	+105	°C
Supply Voltages ¹	V _{DD1} , V _{DD2}	-0.5	+7.0	V
Input Voltage ^{1, 2}	VIA, VIB, VIC, VID, VE1, VE2	-0.5	V _{DDI} + 0.5	V
Output Voltage ^{1, 2}	Voa, Vob, Voc, Vod	-0.5	V _{DDO} + 0.5	V
Average Output Current, Per Pin ³				
Side 1	lo1	-18	+18	mA
Side 2	I _{O2}	-22	+22	mA
Common-Mode Transients ⁴		-100	+100	kV/μs

¹ All voltages are relative to their respective ground.

² V_{DDI} and V_{DDO} refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section.

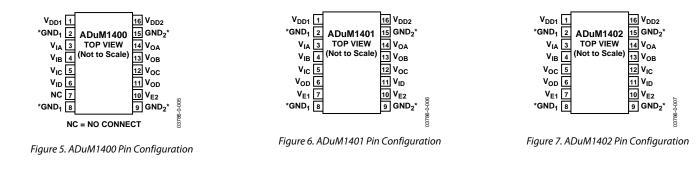
³ See Figure 4 for maximum rated current values for various temperatures.

⁴ Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Ratings may cause latch-up or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


Table 10. Truth Table (Positive Logic)

V _{IX} Input ¹	V _{EX} Input ²	V _{DDI} State ¹	V _{DDO} State ¹		Notes
Н	H or NC	Powered	Powered	Н	
L	H or NC	Powered	Powered	L	
Х	L	Powered	Powered	Z	
х	H or NC	Unpowered	Powered	Н	Outputs return to the input state within 1 μs of V_{DDI} power restoration.
Х	L	Unpowered	Powered	Z	
Х	x	Powered	Unpowered	Indeterminate	Outputs return to the input state within 1 μ s of V _{DDO} power restora- tion if V _{EX} state is H or NC. Outputs return to high impedance state within 8 ns of V _{DDO} power restoration if V _{EX} state is L.

¹ V_{IX} and V_{OX} refer to the input and output signals of a given channel (A, B, C, or D). V_{EX} refers to the output enable signal on the same side as the V_{OX} outputs. V_{DDI} and V_{DDO} refer to the supply voltages on the input and output sides of the given channel, respectively.

 2 In noisy environments, connecting V_{EX} to an external logic high or low is recommended.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

*Pins 2 and 8 are internally connected. Connecting both to GND₁ is recommended. Pins 9 and 15 are internally connected. Connecting both to GND₂ is recommended. Output enable Pin 10 on the ADuM1400 may be left disconnected if outputs are to be always enabled. Output enable Pins 7 and 10 on the ADuM1401/ADuM1402 may be left disconnected if outputs are to be always enabled. In noisy environments, connecting Pin 7 (for ADuM1401 and ADuM1402) and Pin 10 (for all models) to an external logic high or low is recommended.

Table 11. ADuM1400 Pin Function Descriptions

Pin		
No.	Mnemonic	Function
1	V _{DD1}	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	GND1	Ground 1. Ground reference for isolator Side 1.
3	VIA	Logic Input A.
4	VIB	Logic Input B.
5	VIC	Logic Input C.
6	VID	Logic Input D.
7	NC	No Connect.
8	GND1	Ground 1. Ground reference for isolator Side 1.
9	GND ₂	Ground 2. Ground reference for isolator Side 2.
10	V _{E2}	Output Enable 2. Active high logic input. V_{OA} , V_{OB} , V_{OC} , and V_{OD} outputs are enabled when V_{E2} is high or disconnected. V_{OA} , V_{OB} , V_{OC} , and V_{OD} outputs are disabled when V_{E2} is low. In noisy environments, connecting V_{E2} to an external logic high or low is recommended.
11	V _{OD}	Logic Output D.
12	Voc	Logic Output C.
13	V _{OB}	Logic Output B.
14	VOA	Logic Output A.
15	GND ₂	Ground 2. Ground reference for isolator Side 2.
16	V _{DD2}	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.

Table 12. ADuM1401 Pin Function Descriptions

Pin		
No.	Mnemonic	Function
1	V _{DD1}	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	GND1	Ground 1. Ground reference for isolator Side 1.
3	VIA	Logic Input A.
4	VIB	Logic Input B.
5	VIC	Logic Input C.
6	Vod	Logic Output D.
7	V _{E1}	Output Enable 1. Active high logic input. V_{OD} output is enabled when V_{E1} is high or disconnected. V_{OD} is disabled when V_{E1} is low. In noisy environments, connecting V_{E1} to an external logic high or low is recommended.
8	GND ₁	Ground 1. Ground reference for isolator Side 1.
9	GND ₂	Ground 2. Ground reference for isolator Side 2.
10	V _{E2}	Output Enable 2. Active high logic input. V_{OA} , V_{OB} , and V_{OC} outputs are enabled when V_{E2} is high or disconnected. V_{OA} , V_{OB} , and V_{OC} outputs are disabled when V_{E2} is low. In noisy environments, connecting V_{E2} to an external logic high or low is recommended.
11	V _{ID}	Logic Input D.
12	Voc	Logic Output C.
13	Vob	Logic Output B.
14	Voa	Logic Output A.
15	GND ₂	Ground 2. Ground reference for isolator Side 2.
16	V _{DD2}	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.

Table 13. ADuM1402 Pin Function Descriptions

Pin		
No.	Mnemonic	Function
1	V _{DD1}	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	GND1	Ground 1. Ground reference for isolator Side 1.
3	VIA	Logic Input A.
4	VIB	Logic Input B.
5	Voc	Logic Output C.
6	V _{OD}	Logic Output D.
7	V _{E1}	Output Enable 1. Active high logic input. V_{OC} and V_{OD} outputs are enabled when V_{E1} is high or disconnected. V_{OC} and V_{OD} outputs are disabled when V_{E1} is low. In noisy environments, connecting V_{E1} to an external logic high or low is recommended.
8	GND1	Ground 1. Ground reference for isolator Side 1.
9	GND ₂	Ground 2. Ground reference for isolator Side 2.
10	V _{E2}	Output Enable 2. Active high logic input. V_{OA} and V_{OB} outputs are enabled when V_{E2} is high or disconnected. V_{OA} and V_{OB} outputs are disabled when V_{E2} is low. In noisy environments, connecting V_{E2} to an external logic high or low is recommended.
11	V _{ID}	Logic Input D.
12	Vic	Logic Input C.
13	V _{OB}	Logic Output B.
14	Voa	Logic Output A.
15	GND ₂	Ground 2. Ground Reference for Isolator Side 2.
16	V _{DD2}	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.

TYPICAL PERFORMANCE CHARACTERISTICS

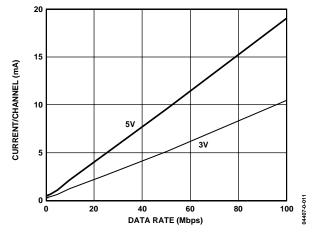


Figure 8. Typical Input Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation

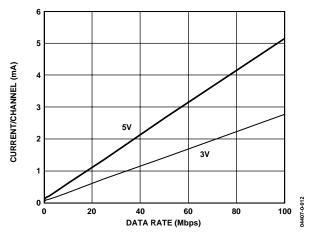


Figure 9. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

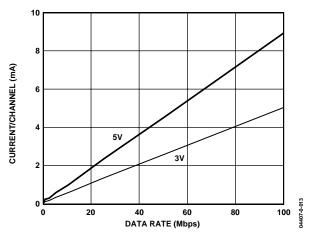


Figure 10. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

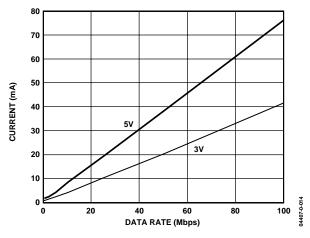


Figure 11. Typical ADuM1400 V_{DD1} Supply Current vs. Data Rate for 5 V and 3 V Operation

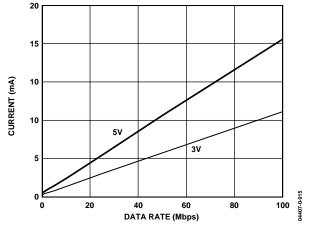


Figure 12. Typical ADuM1400 V_{DD2} Supply Current vs. Data Rate for 5 V and 3 V Operation

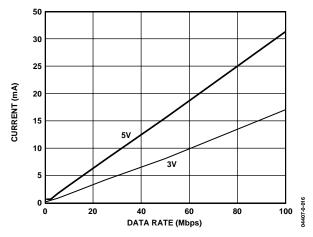


Figure 13. Typical ADuM1401 V_{DD1} Supply Current vs. Data Rate for 5 V and 3 V Operation

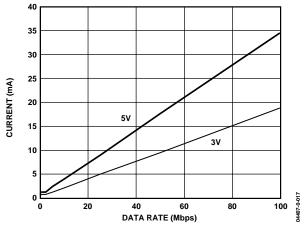


Figure 14. Typical ADuM1401 V_{DD2} Supply Current vs. Data Rate for 5 V and 3 V Operation

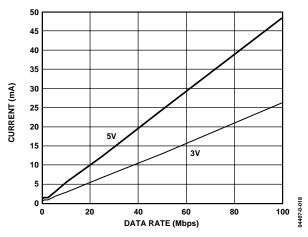


Figure 15. Typical ADuM1402 V_{DD1} or V_{DD2} Supply Current vs. Data Rate for 5 V and 3 V Operation

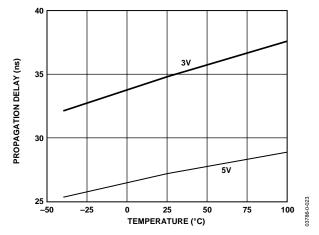


Figure 16. Propagation Delay vs. Temperature, C Grade

APPLICATION INFORMATION PC BOARD LAYOUT

The ADuM140x digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (Figure 17). Bypass capacitors are most conveniently connected between Pins 1 and 2 for V_{DD1} and between Pins 15 and 16 for V_{DD2} . The capacitor value should be between 0.01 µF and 0.1 µF. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm. Bypassing between Pins 1 and 8 and between Pins 9 and 16 should also be considered unless the ground pair on each package side is connected close to the package.

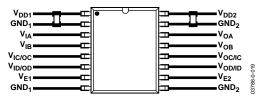


Figure 17. Recommended Printed Circuit Board Layout

In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this could cause voltage differentials between pins exceeding the device's Absolute Maximum Ratings, thereby leading to latchup or permanent damage.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output may differ from the propagation delay to a logic high.

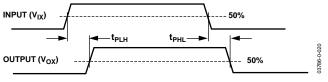


Figure 18. Propagation Delay Parameters

Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal's timing is preserved.

Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM140x component.

Propagation delay skew refers to the maximum amount the propagation delay differs between multiple ADuM140x components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow (~1 ns) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than 2 μ s, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses of more than about 5 μ s, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 10) by the watchdog timer circuit.

The limitation on the ADuM140x's magnetic field immunity is set by the condition in which induced voltage in the transformer's receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this may occur. The 3 V operating condition of the ADuM140x is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V. The decoder has a sensing threshold at about 0.5 V, therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$V = (-d\beta/dt) \sum \prod r_n^2; n = 1, 2, \dots, N$$

where:

β is magnetic flux density (gauss). *N* is the number of turns in the receiving coil. *r_n* is the radius of the nth turn in the receiving coil (cm).

Given the geometry of the receiving coil in the ADuM140x and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 19.

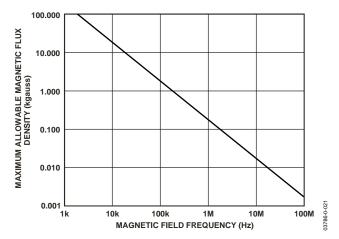


Figure 19. Maximum Allowable External Magnetic Flux Density

For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and was of the worst-case polarity), it would reduce the received pulse from > 1.0 V to 0.75 V—still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADuM140x transformers. Figure 20 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown, the ADuM140x is extremely immune and can be affected only by extremely large currents operated at high frequency, very close to the component. For the 1 MHz example noted, one would have to place a 0.5 kA current 5 mm away from the ADuM140x to affect the component's operation.

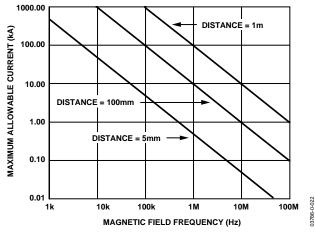


Figure 20. Maximum Allowable Current for Various Current-to-ADuM140x Spacings

Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce sufficiently large error voltages to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM140x isolator is a function of the supply voltage, the channel's data rate, and the channel's output load.

For each input channel, the supply current is given by

$$I_{DDI} = I_{DDI(Q)}$$
 $f \le 0.5 f_r$

$$I_{DDI} = I_{DDI(D)} \times (2f - f_r) + I_{DDI(Q)}$$
 $f > 0.5f_r$

For each output channel, the supply current is given by

$$I_{DDO} = I_{DDO(Q)}$$
 $f \le 0.5 f_r$

$$I_{DDO} = (I_{DDO(D)} + (0.5 \times 10^{-3}) \times C_L V_{DDO}) \times (2f - f_r) + I_{DDO(Q)}$$

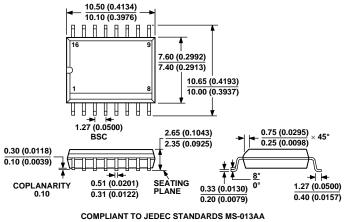
$$f > 0.5f_r$$

where:

*I*_{DDI (D)}, *I*_{DDO (D)} are the input and output dynamic supply currents per channel (mA/Mbps).

 C_L is output load capacitance (pF).

 V_{DDO} is the output supply voltage (V).


f is the input logic signal frequency (MHz, half of the input data rate, NRZ signaling).

 f_r is the input stage refresh rate (Mbps).

 $I_{DDI(Q)}$, $I_{DDO(Q)}$ are the specified input and output quiescent supply currents (mA).

To calculate the total I_{DD1} and I_{DD2} supply current, the supply currents for each input and output channel corresponding to I_{DD1} and I_{DD2} are calculated and totaled. Figure 8 and Figure 9 provide per-channel supply currents as a function of data rate for an unloaded output condition. Figure 10 provides perchannel supply current as a function of data rate for a 15 pF output condition. Figure 11 through Figure 14 provide total I_{DD1} and I_{DD2} supply current as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-013AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 21. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16) Dimension shown in millimeters (inches)

ORDERING GUIDE

	Number of Inputs,	Number of Inputs,	Maximum Data Rate	Maximum Propagation	Maximum Pulse Width		Package
Model	V _{DD1} Side	V _{DD2} Side	(Mbps)		Distortion (ns)	Temperature Range (°C)	Option ¹
ADuM1400ARW ²	4	0	1	100	40	-40 to +105	RW-16
ADuM1400BRW ²	4	0	10	50	3	–40 to +105	RW-16
ADuM1400CRW ²	4	0	90	32	2	–40 to +105	RW-16
ADuM1400ARWZ ^{2, 3}	4	0	1	100	40	–40 to +105	RW-16
ADuM1400BRWZ ^{2, 3}	4	0	10	50	3	–40 to +105	RW-16
ADuM1400CRWZ ^{2, 3}	4	0	90	32	2	–40 to +105	RW-16
ADuM1401ARW ²	3	1	1	100	40	-40 to +105	RW-16
ADuM1401BRW ²	3	1	10	50	3	–40 to +105	RW-16
ADuM1401CRW ²	3	1	90	32	2	–40 to +105	RW-16
ADuM1401ARWZ ^{2, 3}	3	1	1	100	40	–40 to +105	RW-16
ADuM1401BRWZ ^{2, 3}	3	1	10	50	3	–40 to +105	RW-16
ADuM1401CRWZ ^{2, 3}	3	1	90	32	2	–40 to +105	RW-16
ADuM1402ARW ²	2	2	1	100	40	-40 to +105	RW-16
ADuM1402BRW ²	2	2	10	50	3	–40 to +105	RW-16
ADuM1402CRW ²	2	2	90	32	2	–40 to +105	RW-16
ADuM1402ARWZ ^{2, 3}	2	2	1	100	40	–40 to +105	RW-16
ADuM1402BRWZ ^{2, 3}	2	2	10	50	3	–40 to +105	RW-16
ADuM1402CRWZ ^{2, 3}	2	2	90	32	2	–40 to +105	RW-16
EVAL-ADuM1402EBA	2	2	1	100	40	–40 to +105	Evaluation Board
EVAL-ADuM1402EBB	2	2	10	50	3	–40 to +105	Evaluation Board
EVAL-ADuM1402EBC	2	2	90	32	2	–40 to +105	Evaluation Board

 1 RW-16 = 16-lead wide body SOIC.

² Tape and reel are available. The addition of an "-RL" suffix designates a 13" (1,000 units) tape and reel option.

 3 Z = Pb-free part.

NOTES

NOTES

NOTES

©2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C03786–0–5/05(C)

www.analog.com

Rev. C | Page 24 of 24

中发网 WWW.ZFA.CN

全球最大的PDF中文下载站

中发网

PDF 资料下载尽在中发网

版权所有 中发飞调 京ICP证041662号 🛞 Copyright © 2004-2005 www.zfa.cn All Rights Reserved 客 服 热 线: 深圳 0755-83278916, 83278919 北京 010-02632888, 62636888