

October 1987 Revised January 1999

MM74C86

Quad 2-Input EXCLUSIVE-OR Gate

General Description

The MM74C86 employs complementary MOS (CMOS) transistors to achieve wide power supply operating range, low power consumption and high noise margin these gates provide basic functions used in the implementation of digital integrated circuit systems. The N- and P-channel enhancement mode transistors provide a symmetrical circuit with output swing essentially equal to the supply voltage. No DC power other than that caused by leakage current is consumed during static condition. All inputs are protected from damage due to static discharge by diode clamps to $\rm V_{CC}$ and GND.

Features

■ Wide supply voltage range: 3.0V to 15V

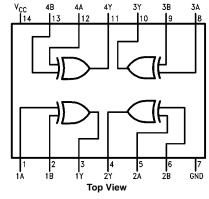
■ Guaranteed noise margin: 1.0V

■ High noise immunity: 0.45 V_{CC} (typ.)

■ Low power: TTL compatibility: Fan out of 2 driving 74L

■ Low power consumption: 10 nW/package (typ.)

■ The MM74C86 follows the MM74LS86 Pinout


Ordering Code:

Order Number	Package Number	er Package Description			
MM74C86M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow			
MM74C86N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Pin Assignments for DIP and SOIC

Truth Table

Inputs		Output		
Α	В	Y		
L	L	L		
L	Н	Н		
Н	L	Н		
Н	Н	L		

H = HIGH Level L = LOW Level

Absolute Maximum Ratings(Note 1)

 $\begin{tabular}{lll} \mbox{Voltage at any Pin (Note 1)} & -0.3\mbox{V to V}_{CC} + 0.3\mbox{V} \\ \mbox{Operating Temperature Range} & -40\mbox{°C to +85\mbox{°C}} \\ \mbox{Storage Temperature Range} & -65\mbox{°C to +150\mbox{°C}} \\ \end{tabular}$

Power Dissipation (P_D)

 $\begin{array}{cc} \text{Dual-In-Line Package} & 700 \text{ mW} \\ \text{Small Outline} & 500 \text{ mW} \\ \text{Operating Range (V}_{\text{CC}}) & 3.0 \text{V to 15V} \\ \end{array}$

Absolute Maximum (V_{CC})
Lead Temperature
(Soldering, 10 seconds)

18V

260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

DC Electrical Characteristics

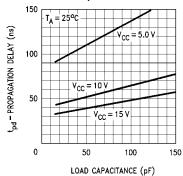
Min/max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS		<u> </u>			
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5.0V	3.5			V
. ,		V _{CC} = 10V	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5.0V			1.5	V
		V _{CC} = 10V			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V$, $I_{O} = -10 \mu A$	4.5			V
		$V_{CC} = 10V$, $I_{O} = -10 \mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = +10 \mu A$			0.5	V
		$V_{CC} = 10V$, $I_{O} = +10 \mu A$			1.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μА
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
Icc	Supply Current	V _{CC} = 15V		0.01	15	μΑ
CMOS/LP	TTL INTERFACE	•	<u>.</u>		ı	
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} -1.5			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75V, I_{O} = 360 \mu A$			0.4	V
	ORIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)				
I _{SOURCE}	Output Source Current	$V_{CC} = 5.0V, V_{OUT} = 0V$	-1.75	-3.3		mA
	(P-Channel)	$T_A = 25^{\circ}C$				
I _{SOURCE}	Output Source Current	V _{CC} = 10V, V _{OUT} = 0V	-8.0	-15		mA
	(P-Channel)	T _A = 25°C				
I _{SINK}	Output Sink Current	$V_{CC} = 5.0V$, $V_{OUT} = V_{CC}$	1.75	3.6		mA
	(N-Channel)	T _A = 25°C				
I _{SINK}	Output Sink Current	$V_{CC} = 10V$, $V_{OUT} = V_{CC}$	8.0	16		mA
	(N-Channel)	T _A = 25°C				

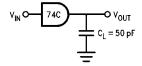
AC Electrical Characteristics (Note 2)

 $\rm T_A = 25^{\circ}C,\, C_L = 50$ pF, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd}	Propagation Time to Logical	$V_{CC} = 5.0V$		110	185	ns
	"1" or "0"	V _{CC} = 10V		50	90	ns
C _{IN}	Input Capacitance	(Note 3)		5.0		pF
C _{PD}	Power Dissipation Capacitance	Per Gate (Note 4)		20		pF

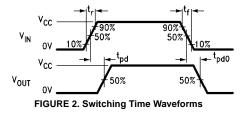

Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.


Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note—AN-90.

Typical Performance Characteristics

Propagation Delay Time vs Load Capacitance



Test Circuits and Waveforms

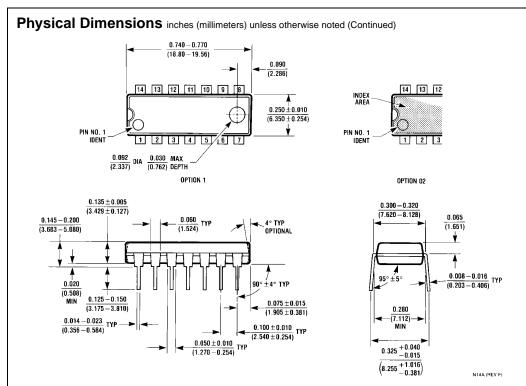

Delays Measured with Input $t_{r,} \ t_{f} = 20 \ \text{ns}$

FIGURE 1. AC Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted $\frac{0.335 - 0.344}{(8.509 - 8.738)}$ LEAD NO. 1 IDENT $\frac{0.150 - 0.157}{(3.810 - 3.988)}$ $\frac{0.053 - 0.069}{(1.346 - 1.753)}$ $\frac{0.010-0.020}{(0.254-0.508)}$ 8° MAX TYP ALL LEADS $\frac{0.004 - 0.010}{(0.102 - 0.254)}$ SEATING PLANE 0.014 (0.356) 0.008-0.010 (0.203-0.254) TYP ALL LEADS $-\frac{0.014 - 0.020}{(0.356 - 0.508)} \text{ TYP}$ 0.050 (1.270) TYP 0.016 - 0.050 (0.406 - 1.270) TYP ALL LEADS 0.004 (0.102) ALL LEAD TIPS $-\frac{0.008}{(0.203)}$ TYP

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Package Number M14A

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com